Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Anatomia Vegetal: Xilema, Notas de estudo de Biologia Vegetal

capitulo sobre xilmema

Tipologia: Notas de estudo

2017
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 29/07/2017

miltom-silva-6
miltom-silva-6 🇧🇷

5

(1)

1 documento

Pré-visualização parcial do texto

Baixe Anatomia Vegetal: Xilema e outras Notas de estudo em PDF para Biologia Vegetal, somente na Docsity! Capítulo 5 Xilema Cecília Gonçalves Costa 1 Cátia Henriques Callado 2 Vera T. Rauber Caradin 3 Sandra Maria Carmello-Guerreiro 4 O xilema é o tecido responsável pelo transporte de água e solutos à longa distância, armazenamento de nutrientes e suporte mecânico. O xilema e o floema constituem o tecido vascular. Estes tecidos são contínuos através de todos os órgãos (vegetativos ou reprodutivos) das plantas vasculares, formando um verdadeiro sistema vascular. Ontogeneticamente, tanto para o xilema quanto para o floema, é mais didática a distinção entre sistema vascular primário (formado a partir do procâmbio) e sistema vascular secundário (formado a partir do câmbio vascular, um meristema lateral). Os xilemas primário e secundário são tecidos complexos formados por elementos condutores, células parenquimáticas e fibras, além de outros tipos celulares. Porém, no xilema primário esses tipos celulares organizam-se apenas no sistema axial e são derivados do procâmbio; já no xilema secundário, estão organizados nos sistemas axial e radial e são originados pelo câmbio (Quadro 5.1). 1 Laboratório de Botânica Estrutural, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. 22640-030 Rio de Janeiro, RJ. 2 DBV- Universidade do Estado do Rio de Janeiro. 20550-000 Maracanã, Rio de Janeiro, RJ. 3 Laboratório de Produtos Florestais, LPF-IBAMA. 70818-900 Brasília, DF 4 Departamento de Botânica, IB, UNICAMR Cx. Postal 6109. 13083-970 Campinas, SR 130 ____ Costa, Callado, Coradin e Carmello-Guerreiro Quadro 5.1 – Tipos celulares dos xilemas primário e secundário, origem e função Origem Sistema Tipo celular Função Procâmbio Axial Traqueídes5 p ri m á r io Elementos de vaso Condução de água X il em a Fibras libriformes Sustentação e eventual Fibrotraqueídes armazenamento Parênquima axial Armazenamento, translocação de água e solutos à curta distância Iniciais Axial Traqueídes fusiformes Elementos de vaso Condução de água do câmbio Fibras libriformes Sustentação e eventual se cu n d á ri o Fibrotraqueídes armazenamento Parênquima axial Armazenamento, translocação de água e solutos à curta distância X il em a Iniciais Radial Parênquima radial Armazenamento, translocação de radiais do (raio) água e solutos à curta câmbio distância Composição Celular do Xilema Elementos traqueais Há dois tipos básicos de elementos traqueais: traqueídes (Figs. 5.1 - A e 5.3 - A a D) e elementos de vaso (Figs. 5.1 - A e 5.2 - A e B). As traqueídes são imperfuradas, enquanto os elementos de vaso são dotados de placas de perfuração. As traqueídes são típicas das gimnospermas, sendo encontradas também entre as famílias primitivas das angiospermas. FJas se posicionam em fileiras longitudinais, justapondo-se pelas extremidades não perfuradas (Fig. 5.3 - D). Já os elementos de vaso são característicos das angiospermas e das ordens mais evoluídas de gimnospermas. Também ocorrem em fileiras longitudinais e se comunicam através das placas de perfuração, constituindo os vasos (Fig. 5.2 - B e 5.4). Tanto as traqueídes como os elementos de vaso, no curso de sua diferenciação, perdem seus protoplastos, tornando -se aptos para o transporte da água e dos sais minerais. Nos elementos de vaso, a parede terminal de cada extremidade sofre um processo de dissolução, originando a placa de perfuração (Fig. 5.4). A dissolução da parede terminal pode ser total, dando origem à placa de perfuração simples, ou parcial, constituindo as placas de perfuração foraminada, reticulada, escalariforme, mista e radiada (Figs. 5.4 e 5.5). As placas de perfuração também podem ser encontradas nas paredes laterais dos elementos de vaso e, em alguns casos, nas células específicas do parênquima radial, as 5 Há divergência entre os anatomistas quanto ao emprego dos termos. Alguns preferem traqueíde, fibrotraqueíde, enquanto outros elegem traqueó/de, fibrotraqueóide, por considerarem que estão mais de acordo com a etmologia em português e que traqueíde e fibrotraqueíde são traduções diretas da língua inglesa. 133 Xilema____________________________________________________________________________ Parênquima radial (raio) Os raios, assim como o parênquima axial, são responsáveis pelo armazenamento e translocação de água e solutos a curta distância, principalmente no sentido lateral. Os raios são compostos basicamente de três tipos de células parenquimáticas: procumbentes, eretas e quadradas. Célula procumbente é aquela que apresenta maior dimensão no sentido radial; a quadrada é aproximadamente isodiamétrica; e célula ereta apresenta sua maior dimensão no sentido axial. Essa classificação baseia-se no aspecto que tais células apresentam nas seções radiais e tangenciais (Fig. 5.1 - B). Quanto à composição, organização e número de células, os raios podem variar consideravelmente, o que leva a classificá-los em: homocelulares, se formados por um único tipo celular, isto é, se todas as suas células forem procumbentes, ou eretas, ou quadradas; e heterocelulares, quando são formados por dois ou mais tipos celulares. Os raios homocelulares ou heterocelulares podem ser unisseriados, se constituídos apenas por uma fileira de células em largura (Fig. 5.3 - C), ou multisseriados, quando formados por duas ou mais células em largura (Fig. 5.2 - B). As células do raio que não têm contato com os vasos (e são particularmente numerosas nos raios multisseriados) acumulam amido no início do verão e o mobilizam no início da primavera. Acredita-se que estas células estejam relacionadas com o transporte radial periódico de carboidratos mobilizados para a reativação do câmbio. Fibras As fibras são células de sustentação, responsáveis pela rigidez ou flexibilidade da madeira. Possuem forma alongada e extremidades afiladas, com maior dimensão no sentido do eixo longitudinal do tronco da árvore (Fig. 5.1 - A). As paredes das fibras variam em espessura, mas, geralmente, são mais espessas que as paredes das demais células do xilema secundário (Fig. 5.2 - A e B). As fibras dividem-se em: libriformes e fibrotraqueídes (Fig. 5.1 - A). As libriformes possuem pontoações simples; as fibrotraqueídes, pontoações areoladas. Ambas podem apresentar septos transversais de parede celulósica, que as subdividem, sendo então denominadas libriformes septadas ou fibrotraqueídes septadas. Em uma mesma espécie, podem ser observadas, lado a lado, fibras libriformes e, ou, fibrotraqueídes septadas e não septadas. Os elementos septados retêm seus protoplasmas, são multinucleados e estão relacionados com a reserva de substâncias. As fibras libriformes e as fibrotraqueídes podem ser ainda gelatinosas (ver lenho de tração). 134 ____ Costa, Callado, Coradin e Carmello-Guerreiro Pontoações Conforme discutido no Capítulo 2, os elementos celulares do xilema secundário têm pontoações simples e, ou, areoladas. As pontoações simples ocorrem nas fibras libriformes e nas células do parênquima axial e radial. As areoladas são encontradas nos elementos de vaso, traqueídes e fibrotraqueídes. Nas pontoações areoladas, a parede secundária forma uma projeção sobre a cavidade da pontoação - a câmara da pontoação -, deixando no centro uma abertura - o poro, ou abertura da aréola (Fig. 5.10 - A). Nas traqueídes, a membrana primária da pontoação apresenta espessamento central, denominado torus, que é sustentado pelo margo, porção da parede em que as microfibrilas de celulose apresentam arranjo frouxo, reticulado e que circunda o torus (Fig. 5.10 - B). As pontoações areoladas podem variar quanto ao aspecto, arranjo, extensão e profundidade. Estas características são importantes para a identificação das madeiras. Quanto ao arranjo, as pontoações podem ser classificadas em: escalariformes, opostas e alternas (Fig. 5.11—A a C). As pontoações dotadas de projeções da parede secundária na câmara da pontoação - pontoações ornamentadas, ou guarnecidas (Fig. 5.12), são características de algumas famílias, gêneros ou espécies (Leguminosae, Melastomataceae, Myrtaceae, Rubiaceae). Esta pontoação nem sempre é observada com clareza ao microscópio de luz, sendo melhor evidenciada ao microscópio eletrônico de varredura (Fig. 5.13). Xilema Primário O xilema primário apresenta os mesmos tipos celulares básicos do xilema secundário: os elementos traqueais (condutores), as células parenquimáticas e as fibras. A diferença é que os tipos celulares do xilema primário estão organizados apenas no sistema axial. Proto e metaxilema Durante o desenvolvimento vegetal, distinguem-se duas categorias de xilema primário: o protoxilema e o metaxilema (Fig. 5.14 - A e B). O protoxilema é constituído de células condutoras que se diferenciam primeiro, ou seja, adquirem paredes secundárias lignificadas precocemente, e, normalmente, apresentam menor diâmetro. O metaxilema é composto de células condutoras que se diferenciam tardiamente e, em geral, apresentam diâmetro maior, isto é, a deposição de paredes secundárias ocorre mais tarde, permitindo que as células aumentem de tamanho antes de atingir a maturidade. O protoxilema ocorre, geralmente, em partes do corpo primário da planta que ainda não completaram seu alongamento e diferenciação. Neste caso, como a diferenciação do elemento traqueal é precoce e as células parenquimáticas ao redor podem ou não ter completado seu alongamento, as células do protoxilema às vezes sofrem estiramento, em razão da força exercida pelo alongamento dessas células. Quando o protoxilema é estirado, pode ficar completamente obliterado pelas células parenquimáticas circundantes, tornando-se não- funcional (Fig. 5.14 - A). No ápice caulinar de muitas monocotiledôneas durante o estiramento, o protoxilema fica parcialmente colapsado, mas não obliterado, e neste local observam-se espaços sem células, denominados lacunas do protoxilema, que são rodeados por células parenquimáticas (Fig. 5.14 - C). 135 Xilema____________________________________________________________________________ O metaxilema, normalmente, inicia seu desenvolvimento em partes da planta que ainda estão se alongando, porém só completam a maturação ou total diferenciação depois de o alongamento ter sido concluído. Portanto, estas células são menos afetadas pelo alongamento das células ao redor. O metaxilema é, muitas vezes, mais complexo que o protoxilema e pode apresentar fibras, além dos elementos traqueais e das células parenquimáticas. Os elementos traqueais do metaxilema não são obliterados depois de o crescimento primário ter sido completado, mas tornam-se não-funcionais após a formação do xilema secundário em plantas lenhosas. Já em plantas que não apresentam crescimento secundário, como muitas gramíneas, é o metaxilema que permanece funcional nos órgãos que já atingiram a maturidade. Xilema Secundário O xilema secundário, assim como o floema secundário, contribui para o crescimento em espessura do corpo do vegetal, em conseqüência da adição de novas células. Em seu estádio completo de desenvolvimento, o xilema secundário constitui a madeira, ou lenho, que representa importante fonte de matéria-prima para a economia brasileira. O xilema secundário é um tecido complexo, formado por diferentes tipos celulares organizados em dois sistemas distintos: o axial (ou vertical) e o radial (ou horizontal), ambos derivados do câmbio (Quadro 5.1). As células que integram o sistema axial têm seu maior eixo orientado no sentido vertical (Fig. 5.1 - A) e origem nas iniciais fusiformes do câmbio. As células do sistema radial apresentam seu maior eixo no sentido horizontal (Fig. 5.1 - B) e se originam nas iniciais radiais do câmbio (ver Capítulo 8). Tanto no sistema axial quanto no radial ocorrem células vivas e células mortas, isto é, desprovidas de protoplasto. A proporção e o arranjo de tais células variam, consideravelmente, de acordo com as espécies e, de algum modo, com a época do ano em que são formadas e com o órgão em que se desenvolvem, a saber, caule ou raiz. Para observação anatômica do xilema secundário, em razão das diferentes formas e arranjo diversificado de seus elementos, é necessário seccionar a madeira (xilema secundário) em três planos diferentes: transversal, longitudinal tangencial e longitudinal radial (Figs. 5.2 - A a C e 5.3 - A a C). A seção transversal é exposta quando se realiza um corte perpendicular ao eixo do tronco, seccionando nesse plano os elementos expostos, o que proporciona a observação do menor diâmetro das células do sistema axial e o comprimento dos raios (Figs. 5.2 - A e 5.3 - A). A seção longitudinal tangencial é perpendicular aos raios e permite a visualização da altura das células do sistema axial e da altura e largura dos raios (Figs. 5.2 - B e 5.3 - C). A seção longitudinal radial é paralela aos raios e perpendicular aos anéis de crescimento e propicia a observação da altura das células do sistema axial e a composição celular dos raios (Figs. 5.2 - C e 5.3 - B). 138 ____ Costa, Callado, Coradin e Carmello-Guerreiro parede das células ou preencher totalmente o lume destas, formando uma estrutura de aspecto vítreo, denominada sílica vítrea. Estruturas secretoras • Células oleíferas e, ou, mucilaginosas - São encontradas nos parênquimas radial e axial ou entre as fibras. Muito semelhantes, estão restritas a poucas dicotiledôneas lenhosas, como as Lauraceae (Fig. 5.21) e Magnoliaceae. • Canais intercelulares axiais, canais intercelulares e canais intercelulares de origem traumática - São duetos tubulares, circundados por células epiteliais que geralmente secretam resinas, gomas etc. Podem ser orientados axial ou radialmente. Têm sido observados em espécies de Burseraceae, Dipterocarpaceae e Leguminosae. Os canais traumáticos formam-se em resposta a injúrias. Seu arranjo é em faixas tangenciais, quase sempre irregulares. • Laticíferos e tubos taniníferos - Os laticíferos podem estender-se radialmente (gêneros de Apocynaceae, Asclepiadaceae, Campanulaceae, Caricaceae, Euphorbiaceae e Moraceae) ou axialmente, penetrando entre as fibras, o que até agora só foi registrado em algumas espécies de Moraceae. Tubos taniníferos nos raios foram encontrados apenas em espécies de Myristicaceae. Lenho estratificado Quando os elementos celulares do xilema secundário se dispõem regularmente em séries horizontais e paralelas, constituem o que se denomina lenho estratificado (Fig. 5.22). A estratificação pode ser total - incluindo todos os elementos celulares dos sistemas axial e radial - ou parcial, como a estratificação dos raios. Em espécies que apresentam raios com duas alturas diferentes, a estratificação pode ocorrer em apenas uma das classes de tamanho dos raios. A estrutura estratificada do lenho tem grande importância na identificação das espécies é observada com maior freqüência nas famílias mais evoluídas (Bignoniaceae, Leguminosae e Meliaceae). Lenho das gimnospermas e das angiospermas Os principais grupos vegetais que produzem xilema secundário ou madeira são as dicotiledôneas lenhosas e as gimnospermas (Quadro 5.2) . O lenho ou madeira das gimnospermas (softwood 7 ) é relativamente mais simples que o das angiospermas, por ser constituído quase que exclusivamente por traqueídes e raios (Fig. 5.3 - A a D). Fibras típicas são raras entre as gimnospermas. O parênquima axial também é pouco abundante, sendo encontrado como células resiníferas em alguns gêneros (ex.: Pinus). O parênquima abundante, arranjado difusamente, encontra-se em poucos géneros, como Juniperus, Thuja, Sequoia e Podocarpus. A ordem mais evoluída, Gnetales, apresenta elementos de vaso, ao lado de traqueídes típicas. 139 Xilema____________________________________________________________________________ A madeira das angiospermas (hardwood 7 ) é caracterizada pela presença de vasos e, geralmente, por uma estrutura bem mais complexa que a das gimnospermas, que apresenta diversos tipos celulares, a saber: elementos de vaso, traqueídes (em algumas famílias - Leguminosae, Myrtaceae e Solanaceae), fibras de vários tipos, parênquima axial em diferentes arranjos e grande diversidade de tipos (Figs. 5.2 -A e B, 5.8 e 5.22). No lenho das angiospermas mais primitivas, como na ordem Magnoliales, podem ser encontrados apenas traqueídes, não ocorrendo elementos de vaso. Quadro 5.2 – Diferenças na estrutura do xilema secundário das gimnospermas e dicotiledôneas Gimnospermas Dicotiledôneas Traqueídes presentes Traqueídes algumas vezes presentes Elementos de vaso ausentes Elementos de vaso presentes Fibras ausentes Fibras presentes Arranjo linear das traqueídes Arranjos variados dos elementos de vaso, parênquima axial, fibras Raios predominantemente unisseriados Raios de várias larguras Parênquima axial ausente Parênquima axial presente em arranjos diversificados Lenho de reação A madeira que se desenvolve em galhos e troncos inclinados, como naqueles que crescem em encostas ou em terrenos instáveis ou, ainda, que se encontram sujeitos a grandes esforços para sustentação, por exemplo, de copas muito frondosas ou de numerosos frutos, produz o chamado lenho de reação. Nas gimnospermas, o lenho de reação desenvolve-se na região inferior à inclinação, na porção sujeita à compressão, e denomina-se lenho de compressão (Fig. 5.23 - B). Já nos angiospermas, o seu desenvolvimento dá-se na região superior, na porção sujeita à tração, e é denominado lenho de tração (Fig. 5.23 - A). O lenho de compressão e o de tração formam-se pelo aumento da atividade cambial nessas regiões, resultando na formação de anéis de crescimento assimétricos. No lenho de compressão, as paredes das traqueídes são mais espessas, têm seção arredondada, deixam entre si espaços intercelulares e possuem teor de lignina mais elevado que o das traqueídes típicas. Em razão da estrutura e composição química das paredes das traqueídes, o lenho de compressão é mais pesado, porém mais frágil que o lenho normal. 7 Estes dois termos não são traduzidos literalmente para o português por não apresentarem relação com o peso da madeira, sendo aceitos sem tradução em nível internacional. Entre os anatomistas de madeira são aceitos, em português, os termos madeira de folhosas ou madeira de dicotiledôneas para hardwood (literalmente madeira dura) e madeira de coníferas para softwood (literalmente madeira macia) Nota de Angyalosy-Alfonso in: Raven et al., 1992. 140 ____ Costa, Callado, Coradin e Carmello-Guerreiro O lenho de tração pode ser identificado pela presença de fibras ou fibrotraqueídes gelatinosas, que possuem paredes com alto teor de celulose, além de ser menos lignificadas que as das fibras ou fibrotraqueídes comuns. A camada interna destas células, denominada camada G, é espessa, altamente higroscópica e constituída por alfa-celulose. Fatores que afetam o desenvolvimento do xilema secundário O impacto que o ambiente exerce sobre a atividade cambial reflete-se na diferenciação das células do xilema secundário, podendo modificar sua estrutura, assim como as propriedades e qualidades tecnológicas da madeira. Os fatores ambientais atuam no desempenho fisiológico das árvores como um todo, de modo que seu desenvolvimento resulta da interação entre as características genéticas da espécie e as variáveis externas às quais esta espécie está sujeita. Fatores como seca, inundação, altitude, latitude, constituição do solo, estádios sucessionais da vegetação e poluição podem alterar significativamente a estrutura anatômica do xilema secundário. Os elementos de vaso, por exemplo, estão associados à eficácia e garantia do transporte de água pela planta, sendo diretamente afetados pelas variações na disponibilidade de água. Estudos de anatomia em plantas provenientes de ambientes mesofíticos e xerofíticos demonstram que os elementos de vaso são maiores e ocorrem em menor número nas plantas em que o suprimento hídrico é adequado. Já nos vegetais sujeitos a déficit hídrico, os elementos de vaso são menores, mais agrupados e bastante numerosos. A influência da latitude e da altitude sobre a anatomia da madeira é também evidente. Com o aumento da latitude, os elementos de vaso tornam-se mais numerosos, mais estreitos e mais curtos; as fibras ficam mais curtas e os raios, mais baixos, além de ocorrerem espessamentos espiralados com maior freqüência nos elementos traqueais e nas fibras. Com relação à altitude são registradas conseqüências similares, não tendo sido observada nenhuma influência sobre a forma dos agrupamentos de vasos ou sobre a ocorrência de espessamentos espiralados. A poluição pode afetar não só as propriedades quantitativas e qualitativas da madeira como a composição química de seus elementos celulares. Estudos cada vez mais numerosos vêm sendo desenvolvidos nesta área, principalmente no hemisfério norte, onde a poluição vem causando sérios prejuízos econômicos, reduzindo a taxa de crescimento não somente de árvores das áreas florestais como também das áreas cultivadas para comercialização. Estruturalmente, as árvores provenientes de ambientes poluídos produzem grande extensão de lenho tardio, sofrendo redução no tamanho dos elementos celulares. 143 Xilema____________________________________________________________________________ Figura 5.2 - Representação esquemática de um tronco de angiosperma seccionado nos planos transversal, longitudinal tangencial e longitudinal radial. A-C: tarumã (Citharexylum myrianthum Cham. - Verbenaceae). A - Seção transversal do xilema secundário mostrando um anel de crescimento e a nítida separação entre lenho inicial e lenho tardio (seta). B - seção longitudinal tangencial do xilema secundário mostrando um vaso constituído por elementos vasculares curtos (seta); largura e altura dos raios e parênquima axial. C - Seção longitudinal radial do xilema secundário mostrando a composição celular dos raios e o parênquima axial. Barra = 300 m. (Fotos: Cátia H. Callado). 144 ____ Costa, Callado, Coradin e Carmello-Guerreiro Figura 5.3 - Pinheiro-do-paraná (Araucaria angustifolia (Bert.) O. Kuntze - Araucariaceae). A - Seção transversal do xilema secundário mostrando a constituição do lenho homogêneo de uma gimnosperma; observam-se o anel de crescimento e a diferença entre o lenho inicial e lenho tardio (seta); traqueídes e raios (*). B - Seção longitudinal radial do xilema secundário mostrando a constituição do lenho homogêneo; observam-se traqueídes (seta) e a composição do raio (*). C - Seção longitudinal tangencial do xilema secundário mostrando traqueídes e raios unisseriados (seta). D - Detalhe das pontoações nas paredes terminais das traqueídes (seta). Barra A-C = 150 m, D = 200 m. (Fotos: Cátia H. Callado). 145 Xilema____________________________________________________________________________ Figura 5.1 – Representação esquemática das placas de perfuração Figura 5.5 - Tarumã (Citharexylum myrianthum Cham. - Verbenaceae). Detalhe da placa de perfuração radiada. Barra = 200 m. (Foto: Cátia H. Callado). 148 ____ Costa, Callado, Coradin e Carmello-Guerreiro Figura 5.8 - Representação esquemática dos diferentes padrões de parênquima axial. A - vasicêntrico; B - aliforme; C - confluente; D - unilateral; E - difuso; F - difuso em agregados. 149 Xilema____________________________________________________________________________ Figura 5.9 - Guarandi (Calophyllum brasiliense Camb. - Clusiaceae). Seção transversal do xilema secundário, evidenciando-se o parênquima axial em faixas (seta). Barra = SOOjum. (Foto: Cátia H. Callado). Figura 5.10- Representação esquemática das pontoações. A - pontoação areolada; B - pontoação areolada com torus; C - pontoação aspirada. Figura 5.11- Representação esquemática do arranjo das pontoações areoladas. A - escalariformes; B - opostas; C - alternas. 150 ____ Costa, Callado, Coradin e Carmello-Guerreiro Figura 5.12 - Representação esquemática da pontoação areolada ornamentada. Barra = l m (Esquema de Raul D. Machado). Figura 5.13 - Merianea robusta Cogn. (Melastomataceae). Detalhe das pontoações ornamentadas nos elementos de vaso, em microscopia eletrônica de varredura 2.700 X (Foto cedida por Maura da Cunha). 153 Xilema____________________________________________________________________________ Figura 5.19 – Angelim-do-campo (Andira fraxinifolia Benth. - Leguminosae-Papilionoideae). Cristal prismático observado em microscopia de polarização. Barra = l0 m. (Foto: Cátia H. Callado). Figura 5.20 – Beilschmiedia taubertiana (Schwack. e Mez) Kosterm. (Lauraceae). Corpúsculo de sílica observado em microscopia eletrônica de varredura. Barra = 4 m. (Foto: Cátia H. Callado). Figura 5.21 – Anoerá (Anaueria brasiliensis Kosterm. - Lauraceae). Células oleíferas (seta preta). Fibra (seta branca). Barra = 10 m. (Foto: Cátia H. Callado). Figura 5.22 – Ipê-amarelo-do-brejo (Tabebuia umbellata (Sond.) Sandwith). Seção tangencial, evidenciando-se a estratificação dos elementos celulares. Barra = 150 m. (Foto: Cátia H. Callado). 154 ____ Costa, Callado, Coradin e Carmello-Guerreiro Figura 5.23 – Representação esquemática do lenho de reação (setas). A - Lenho de tração angiosperma. B - Lenho de compressão - gimnosperma. Capítulo 6 Floema Silvia Rodrigues Machado 1 Sandra Maria Carmello-Guerreiro 2 O floema é o principal tecido de condução de materiais orgânicos e inorgânicos em solução nas plantas vasculares. Água, carboidratos na forma de sacarose, substâncias nitrogenadas como aminoácidos e amidas, lipídios, ácidos orgânicos, ácidos nucléicos, substâncias reguladoras de crescimento, vitaminas e íons inorgânicos são as substâncias transportadas na solução floemática. O transporte de solutos pelo floema é um movimento entre órgãos produtores (fonte) e consumidores (dreno). Um sítio de produção ou armazenamento de substâncias orgânicas, fundamentalmente carboidratos, é aquele em que a disponibilidade desses compostos excede a sua utilização, por exemplo: folhas maduras, cotilédones e endosperma de sementes em germinação, tecidos de reserva de raízes e caules em brotamento. Um sítio consumidor é aquele em que ocorre consumo de substâncias orgânicas para a formação de novos órgãos ou para a acumulação de substâncias de reserva, como por exemplo: meristemas, folhas jovens, cotilédones ou endosperma de sementes em formação, tecidos de reserva de raiz, caule ou folhas quando estão armazenando essas substâncias. Dessa forma, o floema é a via de união entre sítios produtores e consumidores, e o desenvolvimento de uma planta é um reflexo da transferência de materiais entre eles. O floema, de forma análoga ao xilema, ocorre em todos os órgãos da planta. Em raízes com estrutura primária, cordões de floema se alternam com cordões de xilema. Na raiz com estrutura secundária e no eixo caulinar, em geral, o floema localiza-se externamente ao xilema (Figs. 6.5 e 6.27). Algumas dicotiledôneas, como Apocynaceae, Asclepiadaceae, Asteraceae, Curcubitaceae, Convolvulaceae, Myrtaceae e Solanaceae, apresentam um floema adicional interno ao xilema, denominado floema interno, ou intraxilemático (Fig. 6.7). Em órgãos de natureza foliar, a posição do floema é dorsal (inferior ou abaxial). 1 Departamento de Botânica, IB, UNESP Cx. Postal 510. 18618-000 Botucatu, SP 2 Departamento de Botânica, IB, UNICAMP Cx. Postal 6109. 13083-970 Campinas, SP 158 ____ Machado e Carmello-Guerreiro Os elementos crivados adultos, com raras exceções, apresentam uma proteína característica denominada proteína P (P-Phloem) (Figs. 6.16 e 6.20 a 6.22), que é observada no citoplasma periférico. Acredita-se que ela funcione como um endoesqueleto, isto é, uma rede, ou trama, que mantém o citoplasma em posição parietal. A proteína P foi encontrada em todas as dicotiledôneas estudadas e na maioria das monocotiledôneas, estando ausente em gimnospermas e criptógamas vasculares. A proteína P já está presente no elemento de tubo crivado imaturo, na forma de pequenos grumos, denominados corpúsculos de proteína R Durante a diferenciação, esses corpúsculos se rompem e a proteína fica dispersa na fina camada de citoplasma periférico do elemento crivado maduro. A estrutura desta proteína é variável entre espécies e dentro da mesma espécie vegetal, podendo apresentar-se nas formas tubular, filamentosa ou fibrilar, granular e cristalina. Estudos bioquímicos indicam que a proteína P (anteriormente denominada tampão de mucilagem), juntamente com a calose, atua no fechamento dos poros da placa crivada de elementos crivados que apresentaram dano, prevenindo, assim, a perda de assimilados. A ausência de proteína P nas gimnospermas e no protofloema de algumas dicotiledôneas parece estar relacionada com o tamanho pequeno dos poros nas áreas crivadas. Juntamente com a função seladora da proteína P, as lecitinas desta proteína podem imobilizar bactérias e fungos. No elemento de tubo crivado maduro, o retículo endoplasmático apresenta-se como uma rede complexa, adjacente à membrana plasmática, formada por cisternas dispostas paralela ou perpendicularmente à parede celular. Várias funções são atribuídas ao retículo endoplasmático, e a principal refere-se à sua participação no transporte e distribuição de íons. Os plastídios dos elementos de tubo crivado classificam-se em dois tipos quanto à substância que acumulam: plastídio tipo P (Protein) (Figs. 6.15 e 6.17) e plastídio tipo S (Starch) (Fig. 6.18). Os plastídios tipo P podem conter exclusivamente proteína ou proteína e amido e ser divididos em vários subtipos e formas com base na sua composição específica. Os plastídios tipo S acumulam unicamente amido. A ultra-estrutura e composição dos plastídios do elemento de tubo crivado constituem um caráter taxonômico e filogenético extremamente importante para as angiospermas. Células parenquimáticas associadas aos elementos crivados O floema das fanerógamas contém um número variável de células parenquimáticas; estas se diferenciam umas das outras, tanto estrutural quanto funcionalmente, bem como no seu grau de especialização em relação aos elementos crivados. O grau de relação das células parenquimáticas com os elementos crivados permite estabelecer categorias entre eles. 159 Floema____________________________________________________________________________ Células companheiras Entre as células parenquimáticas especializadas, as células companheiras são as mais intimamente relacionadas com o elemento de tubo crivado. Estas duas células são relacionadas ontogeneticamente, pois derivam da mesma inicial procambial ou cambial. As células companheiras estão associadas ao elemento de tubo crivado por numerosas conexões citoplasmáticas (Fig. 6.11) e mantêm-se vivas durante todo o período funcional do elemento de tubo crivado. As células companheiras apresentam citoplasma denso, com muitos ribossomas livres, numerosas mitocôndrias, retículo endoplasmático rugoso, plastídios com tilacóides bem desenvolvidos e núcleo proeminente (Figs. 6.12, 6.23 e 6.24). As conexões entre o elemento de tubo crivado e as células companheiras consistem de poros no lado do elemento de tubo crivado e de plasmodesmos ramificados no lado da célula companheira (Fig. 6.13). Devido às numerosas conexões com o elemento de tubo crivado e às características ultra-estruturais, típicas de uma célula metabolicamente ativa, que as tornam muito semelhantes a uma célula secretora, acredita-se que as células companheiras têm importante papel na distribuição dos assimilados do elemento de tubo crivado. Além disso, acredita- se que elas comandem as atividades dos elementos de tubo crivado mediante a transferência de moléculas informacionais e de outras substâncias, como o ATP através das conexões das paredes em comum. A evidência de interdependência dessas duas células está na observação de que as duas funcionam e morrem ao mesmo tempo. Células albuminosas Em gimnospermas não ocorrem células companheiras como as descritas anteriormente, contudo são evidenciadas células parenquimáticas que se coram mais intensamente com corantes citoplasmáticos. Estas células estão aparentemente associadas, tanto fisiológica quanto morfologicamente, às células crivadas e são denominadas células albuminosas ou células de Strasburger. Células intermediárias Nas nervuras de menor calibre de folhas adultas, onde se dá o carregamento do floema com os açúcares sintetizados no mesofilo, os elementos de tubo crivado são muito pequenos, enquanto as células parenquimáticas associadas são bem maiores (Fig. 6.12). Estas células, incluindo as companheiras e as não-companheiras, são denominadas intermediárias, uma vez que medeiam o acúmulo e carregamento de solutos orgânicos, principalmente carboidratos. A parede destas células pode ser lisa, porém em algumas espécies de dicotiledôneas pode apresentar invaginações em direção ao citoplasma (projeções labirínticas). Neste caso, as células são consideradas células de transferência (Figs. 6.25 e 6.26). Há dois tipos de células intermediárias: tipo A e tipo B. As do tipo A são células companheiras com projeções labirínticas desenvolvidas em toda a superfície da parede, exceto naquela em contato com o elemento de tubo crivado. As do tipo B não são células companheiras, e as projeções labirínticas, presentes em toda a superfície da célula, são mais desenvolvidas na face de contato com o elemento de tubo crivado. Entre as funções atribuídas às células intermediárias 160 ____ Machado e Carmello-Guerreiro com projeções labirínticas incluem-se as de receber e transferir os carboidratos para os elementos de tubo crivado, recuperar e reciclar os solutos a partir do apoplasto e incrementar as trocas apoplasto-simplasto via membrana plasmática. Nas células intermediárias, companheiras ou não-companheiras, com ou sem projeções labirínticas, ocorrem numerosas conexões citoplasmáticas por meio de plasmodesmos. Células parenquimáticas não-especializadas, fibras e esclereídes Células parenquimáticas não-especializadas, fibras e esclereídes são componentes comuns do floema. As células parenquimáticas podem conter diferentes substâncias como amido, taninos e cristais. As fibras, normalmente abundantes no floema, são de dois tipos: septadas e não-septadas, que podem ou não ter protoplasto vivo na maturidade. As fibras que mantêm o protoplasto vivo na maturidade funcionam como células de reserva de substâncias, atuando de forma similar às células do parênquima. As esclereídes são também freqüentemente encontradas no floema e podem estar associadas às fibras ou ocorrer isoladas. Estas células geralmente se encontram nas partes mais velhas do floema e resultam da esclerificação de células do parênquima, que pode ser precedida ou não de crescimento celular intrusivo. Durante este crescimento, as esclereídes alongam-se ou tornam-se muito ramificadas, ficando difícil distingui-las das fibras. O tipo intermediário é denominado fibroesclereíde. A presença de esclereídes e suas características podem ser de valor taxonômico. Floema Primário e Floema Secundário Os elementos celulares do floema que provêm da atividade do procâmbio, um tecido meristemático primário, constituem o floema primário. Já os originados da atividade do câmbio, um meristema lateral, formam o floema secundário e se adicionam ao floema primário. Floema primário Durante a formação de um órgão, distinguem-se duas categorias de floema primário: o protofloema e o metafloema. O protofloema é constituído pêlos elementos crivados que se formam no início da diferenciação do floema, nas partes jovens da planta que ainda estão crescendo. Alonga-se e ajusta-se ao ritmo de crescimento do órgão. À medida que prossegue o crescimento do órgão, os elementos crivados sofrem estiramento, colapsam completamente e cessam o funcionamento, tornando-se, eventualmente, obliterados. Os elementos de tubo crivado do protofloema das angiospermas são estreitos, inconspícuos e com áreas crivadas com calose. Podem ou não ter células companheiras e aparecem isolados, ou em grupos, entre células parenquimáticas que, freqüentemente, estão alongando. Em numerosas angiospermas, essas células parenquimáticas são primórdios de fibras que progressivamente aumentam o seu 163 Floema____________________________________________________________________________ Figuras 6.1 e 6.2 – Seção longitudinal radial do caule de Pinus. 6.1 - Células crivadas (CC) mostrando áreas crivadas (seta) proeminentes nas parede laterais. Barra = 110 m. 6.2 - Detalhe de células crivadas. Barra = 50 m. Figuras 6.3 e 6.4 – Seções longitudinais tangenciais do floema de Banisteriopsis oxyclada. (Malpighiaceae). 6.3 - Elementos de tubo crivado (ETC) com placas crivadas transversais a levemente inclinadas (setas). As células mais estreitas e de conteúdo denso são células companheiras (ponta de seta). Barra =110 um. 6.4 -Detalhe das placas crivadas (seta) com poros visíveis; na porção inferior das placas crivadas vêem-se acúmulos de material, os chamados tampões de proteína R Barra = 50 m. 164 ____ Machado e Carmello-Guerreiro Figuras 6.5 e 6.6 – Seções transversais do caule de erva-doce (Pimpinella). 6.5 - Feixe colateral com xilema (X) e floema (F). No floema, as células maiores e de contorno irregular são os elementos de tubo crivado, e as células menores e mais densas, células companheiras. Barra = 100 um. 6.6 - Elemento de tubo crivado (ETC) com placa crivada simples e células companheiras (CC) densas e com núcleo conspícuo. Barra = 40 m. Figura 6.7 – Seção transversal do caule de aboboreira (Cucurbita), observando-se floema (F) em ambos os lados do xilema (X). Barra = 50 m. Figuras 6.8 e 6.9 – Seções longitudinais do floema de benjoeiro-do-campo (Styrax camporum). 6.8 - Raiz. Os elementos de tubo crivado têm placas crivadas transversais simples (seta). Barra = 50 m. 6.9 - Caule. Placas crivadas inclinadas compostas (seta). Barra = 50 m. 165 Floema p Fay Ê SS Fo A > 6) = 168 ____ Machado e Carmello-Guerreiro Figura 6.14 – Seção transversal da folha de Xyris tortilis mostrando elementos de tubo crivado com paredes nacaradas. CC = célula companheira; CP = célula parenquimática; ETC = elemento de tubo crivado. Barra = l m. Figura 6.15 – Detalhe mostrando elemento de tubo crivado com parede nacarada e plastídios (P) do tipo P com inclusões protéicas cuneiformes. Barra = 0,5 m. Figura 6.16 – Elemento de tubo crivado do floema foliar de Xyris longiscapa com parede espessada e proteína P de aspecto granular dispersa. P = plastídio; M = mitocôndria. Barra = 0,5 m. Figura 6.17 – Parte de um elemento de tubo crivado de X. longiscapa mostrando plastídio tipo P com inclusões de proteína fibrilares e cristalinas. Barra = 2 m. 169 Floema____________________________________________________________________________ 170 ____ Machado e Carmello-Guerreiro Figura 6.18 – Calose (pontas de setas) na área crivada entre dois elementos de tubo crivado (ETC). Plastídios (P) tipo S com amido. Barra = 0,5 m. Figura 6.19 – Calose (seta) e proteína (ponta de seta) na área crivada. Num dos elementos de tubo crivado ocorrem numerosos plastídios (P) com inclusões cuneiformes. Barra = l m. Figura 6.20 – Detalhe de área crivada obstruída por calose (seta) e proteína (P). Barra = 2 m. 173 Floema____________________________________________________________________________ Figura 6.23 – Seção transversal de uma nervura secundária da folha de Physalis angulata (Solanaceae) mostrando elemento de vaso (V), dois elementos de tubo crivado (ETC), células companheiras (CC) e células de parênquima (CP). As células companheiras mostram citoplasma mais denso com numerosas mitocôndrias, amiloplastos e núcleo (N) conspícuo. Barra = l m. Figura. 6.24 – Parte de uma célula companheira mostrando abundância de ribossomos livres, mitocôndrias (M) com cristas desenvolvidas, retículo endoplasmático rugoso (RER) e núcleo (N) com cromatina condensada. A seta indica plasmodesmo. Barra = 2  rn. 174 ____ Machado e Carmello-Guerreiro Figura 6.25 – Seção transversal de uma nervura terminal da folha de Polymnia sonchifolia (Asteraceae). No floema, são visíveis dois elementos de tubo crivado circundados por quatro células companheiras (CC) e uma célula parenquimática (CP). As células companheiras têm conteúdo denso, núcleo conspícuo e paredes com projeções labirínticas. A célula parenquimática, de núcleo também conspícuo, tem o citoplasma menos denso e paredes lisas. Adjacente ao floema, encontra- se um laticífero (L). Barra = 2 m. Figura 6.26 – Parte de duas células companheiras mostrando as projeções labirínticas da parede (setas), mitocôndrias (M), plastídio (P), dictiossomos (D) hiperativos e núcleo (N) conspícuo. Barra = 0,5 m. 175 Floema____________________________________________________________________________ 178 ____ Machado e Carmello-Guerreiro Figuras 6.31 a 6.33 - Seções transversais da casca de Styrax ferrugineus. 6.31 - Na porção mais externa da casca, diversas peridermes (PE) podem ser vistas. No floema ocorrem grupos dispersos de esclereídes (E). Na porção mais externa, os raios (R) estão dilatados. Barra = 120 m. 6.32 - Parte de um raio dilatado contendo células em processo de esclerificação; algumas destas células estão preenchidas por conteúdo denso. Barra = 50 m. 6.33 - Grupo de esclereídes parcialmente circundado por cristais prismáticos. Barra = 40 m.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved