Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

The PIC Microcontroller, Notas de estudo de Eletrônica

apostila pic

Tipologia: Notas de estudo

2010

Compartilhado em 01/07/2010

jose-roberto-carvalho-5
jose-roberto-carvalho-5 🇧🇷

6 documentos

Pré-visualização parcial do texto

Baixe The PIC Microcontroller e outras Notas de estudo em PDF para Eletrônica, somente na Docsity! CAPÍTULO 1 Introdução aos Microcontroladores Introdução As circunstâncias que se nos deparam hoje no campo dos microcontroladores têm os seus primórdios no desenvolvimento da tecnologia dos circuitos integrados. Este desenvolvimento tornou possível armazenar centenas de milhares de transístores num único chip. Isso constituiu um pré-requisito para a produção de microprocessadores e, os primeiros computadores foram construídos adicionando periféricos externos tais como memória, linhas de entrada e saída, temporizadores e outros. Um crescente aumento do nível de integração, permitiu o aparecimento de circuitos integrados contendo simultaneamente processador e periféricos. Foi assim que o primeiro chip contendo um microcomputador e que mais tarde haveria de ser designado por microcontrolador, apareceu. História É no ano de 1969 que uma equipa de engenheiros japoneses pertencentes à companhia BUSICOM chega aos Estados Unidos com a encomenda de alguns circuitos integrados para calculadoras a serem implementados segundo os seus projectos. A proposta foi entregue à INTEL e Marcian Hoff foi o responsável pela sua concretização. Como ele tinha tido experiência de trabalho com um computador (PC) PDP8, lembrou-se de apresentar uma solução substancialmente diferente em vez da construção sugerida. Esta solução pressupunha que a função do circuito integrado seria determinada por um programa nele armazenado. Isso significava que a configuração deveria ser mais simples, mas também era preciso muito mais memória que no caso do projecto proposto pelos engenheiros japoneses. Depois de algum tempo, embora os engenheiros japoneses tenham tentado encontrar uma solução mais fácil, a ideia de Marcian venceu e o primeiro microprocessador nasceu. Ao transformar esta ideia num produto concreto, Frederico Faggin foi de uma grande utilidade para a INTEL. Ele transferiu-se para a INTEL e, em somente 9 meses, teve sucesso na criação de um produto real a partir da sua primeira concepção. Em 1971, a INTEL adquiriu os direitos sobre a venda deste bloco integral. Primeiro eles compraram a licença à companhia BUSICOM que não tinha a mínima percepção do tesouro que possuía. Neste mesmo ano, apareceu no mercado um microprocessador designado por 4004. Este foi o primeiro microprocessador de 4 bits e tinha a velocidade de 6 000 operações por segundo. Não muito tempo depois, a companhia Americana CTC pediu à INTEL e à Texas Instruments um microprocessador de 8 bits para usar em terminais. Mesmo apesar de a CTC acabar por desistir desta ideia, tanto a Intel como a Texas Instruments continuaram a trabalhar no microprocessador e, em Abril de 1972, os primeiros microprocessadores de 8 bits apareceram no mercado com o nome de 8008. Este podia endereçar 16KB de memória, possuía 45 instruções e tinha a velocidade de 300 000 operações por segundo. Esse microprocessador foi o pioneiro de todos os microprocessadores actuais. A Intel continuou com o desenvolvimento do produto e, em Abril de 1974 pôs cá fora um processador de 8 bits com o nome de 8080 com a capacidade de endereçar 64KB de memória, com 75 instruções e com preços a começarem em $360. Uma outra companhia Americana, a Motorola, apercebeu-se rapidamente do que estava a acontecer e, assim, pôs no mercado um novo microprocessador de 8 bits, o 6800. O construtor chefe foi Chuck Peddle e além do microprocessador propriamente dito, a Motorola foi a primeira companhia a fabricar outros periféricos como os 6820 e 6850. Nesta altura, muitas companhias já se tinham apercebido da enorme importância dos microprocessadores e começaram a introduzir os seus próprios desenvolvimentos. Chuck Peddle deixa a Motorola para entrar para a MOS Technology e continua a trabalhar intensivamente no desenvolvimento dos microprocessadores. Em 1975, na exposição WESCON nos Estados Unidos, ocorreu um acontecimento crítico na história dos microprocessadores. A MOS Technology anunciou que ia pôr no mercado microprocessadores 6501 e 6502 ao preço de $25 cada e que podia satisfazer de imediato todas as encomendas. Isto pareceu tão sensacional que muitos pensaram tratar-se de uma espécie de vigarice, considerando que os competidores vendiam o 8080 e o 6800 a $179 cada. Para responder a este competidor, tanto a Intel como a Motorola baixaram os seus preços por microprocessador para $69,95 logo no primeiro dia da exposição. Rapidamente a Motorola pôs uma acção em tribunal contra a MOS Technology e contra Chuck Peddle por violação dos direitos de autor por copiarem ao copiarem o 6800. A MOS Technology deixou de fabricar o 6501, mas continuou com o 6502. O 6502 é um microprocessador de 8 bits com 56 instruções e uma capacidade de endereçamento de 64KB de memória. Devido ao seu baixo custo, o 6502 torna-se muito popular e, assim, é instalado em computadores como KIM-1, Apple I, Apple II, Atari, Comodore, Acorn, Oric, Galeb, Orao, Ultra e muitos outros. Cedo aparecem vários fabricantes do 6502 (Rockwell, Sznertek, GTE, NCR, Ricoh e Comodore adquiriram a MOS Technology) que, no auge da sua prosperidade, chegou a vender microprocessadores à razão de 15 milhões por ano ! Contudo, os outros não baixaram os braços. Frederico Faggin deixa a Intel e funda a Zilog Inc. Em 1976, a Zilog anuncia o Z80. Durante a concepção deste microprocessador, Faggin toma uma decisão crítica. Sabendo que tinha sido já desenvolvida uma enorme quantidade de programas para o 8080, Faggin conclui que muitos vão permanecer fieis a este microprocessador por causa das grandes despesas que adviriam das alterações a todos estes programas. Assim, ele decide que o novo microprocessador deve ser compatível com o 8080, ou seja, deve ser capaz de executar todos os programas que já tenham sido escritos para o 8080. Além destas características, outras características adicionais foram introduzidas, de tal modo que o Z80 se tornou um microprocessador muito potente no seu tempo. Ele podia endereçar directamente 64KB de memória, tinha 176 instruções, um grande número de registos, uma opção para refrescamento de memória RAM dinâmica, uma única alimentação, maior velocidade de funcionamento, etc. O Z80 tornou-se um grande sucesso e toda a gente se transferiu do 8080 para o Z80. Pode dizer-se que o Z80 se constituiu sem sombra de dúvida como o microprocessador de 8 bits com maior sucesso no seu tempo. Além da Zilog, outros novos fabricantes como Mostek, NEC, SHARP e SGS apareceram. O Z80 foi o coração de muitos computadores como o Spectrum, Partner, TRS703, Z-3 e Galaxy, que foram aqui usados. Em 1976, a Intel apareceu com uma versão melhorada do microprocessador de 8 bits e designada por 8085. Contudo, o Z80 era tão superior a este que, bem depressa, a Intel perdeu a batalha. Ainda que mais alguns microprocessadores tenham aparecido no mercado (6809, 2650, SC/MP etc.), já tudo estava então decidido. Já não havia mais grandes melhorias a introduzir pelos fabricantes que fundamentassem a troca por um novo microprocessador, assim, o 6502 e o Z80, acompanhados pelo 6800, mantiveram-se como os mais representativos microprocessadores de 8 bits desse tempo. Microcontroladores versus Microprocessadores Um microcontrolador difere de um microprocessador em vários aspectos. Primeiro e o mais importante, é a sua funcionalidade. Para que um microprocessador possa ser usado, outros componentes devem-lhe ser adicionados, tais como memória e componentes para receber e enviar dados. Em resumo, isso significa que o microprocessador é o verdadeiro coração do computador. Por outro lado, o microcontrolador foi projectado para ter tudo num só. Nenhuns outros componentes externos são necessários nas aplicações, uma vez que todos os periféricos necessários já estão contidos nele. Assim, nós poupamos tempo e espaço na construção dos dispositivos. 1.1 Unidade de Memória A memória é a parte do microcontrolador cuja função é guardar dados. A maneira mais fácil de explicar é descrevê-la como uma grande prateleira cheia de gavetas. Se supusermos que marcamos as gavetas de modo a elas não se confundirem umas com as outras, então o seu conteúdo será facilmente acessível. Basta saber a designação da gaveta e o seu conteúdo será conhecido. Os componentes de memória são exactamente a mesma coisa. Para um determinado endereço, nós obtemos o conteúdo desse endereço. Dois novos conceitos foram apresentados: endereçamento e memória. A memória é o conjunto de todos os locais de memória (gavetas) e endereçamento nada mais é que seleccionar um deles. Isto significa que precisamos de seleccionar o endereço desejado (gaveta) e esperar que o conteúdo desse endereço nos seja apresentado (abrir a gaveta). Além de ler de um local da memória (ler o conteúdo da gaveta), também é possível escrever num endereço da memória (introduzir um conteúdo na gaveta). Isto é feito utilizando uma linha adicional chamada linha de controle. Nós iremos designar esta linha por R/W (read/ write) - ler/escrever. A linha de controle é usada do seguinte modo: se r/w=1, é executada uma operação de leitura, caso contrário é executada uma operação de escrita no endereço de memória. A memória é o primeiro elemento, mas precisamos de mais alguns para que o nosso microcontrolador possa trabalhar. 1.2 Unidade Central de Processamento Vamos agora adicionar mais 3 locais de memória a um bloco específico para que possamos ter as capacidades de multiplicar, dividir, subtrair e mover o seus conteúdos de um local de memória para outro. A parte que vamos acrescentar é chamada "central processing unit" (CPU) ou Unidade Central de Processamento. Os locais de memória nela contidos chamam-se registos. Os registos são, portanto, locais de memória cujo papel é ajudar a executar várias operações matemáticas ou quaisquer outras operações com dados, quaisquer que sejam os locais em que estes se encontrem. Vamos olhar para a situação actual. Nós temos duas entidades independentes (memória e CPU) que estão interligadas, deste modo, qualquer troca de dados é retardada bem como a funcionalidade do sistema é diminuída. Se, por exemplo, nós desejarmos adicionar os conteúdos de dois locais de memória e tornar a guardar o resultado na memória, nós necessitamos de uma ligação entre a memória e o CPU. Dito mais simplesmente, nós precisamos de obter um "caminho" através do qual os dados possam passar de um bloco para outro. 1.3 Bus O programa adiciona os conteúdos de dois locais de memória e coloca a soma destes conteúdos no porto A. A primeira linha do programa manda mover o conteúdo do local de memória "A" para um dos registos da unidade central de processamento. Como necessitamos também de outra parcela, vamos colocar o outro conteúdo noutro registo da unidade central de processamento (CPU). A instrução seguinte pede ao CPU para adicionar os conteúdos dos dois registos e enviar o resultado obtido para o porto A, de modo a que o resultado desta adição seja visível para o mundo exterior. Para um problema mais complexo, naturalmente o programa que o resolve será maior. A tarefa de programação pode ser executada em várias linguagens tais como o Assembler, C e Basic que são as linguagens normalmente mais usadas. O Assembler pertence ao grupo das linguagens de baixo nível que implicam um trabalho de programação lento, mas que oferece os melhores resultados quando se pretende poupar espaço de memória e aumentar a velocidade de execução do programa. Como se trata da linguagem mais frequentemente usada na programação de microcontroladores, ela será discutida num capítulo mais adiantado. Os programas na linguagem C são mais fáceis de se escrever e compreender, mas, também, são mais lentos a serem executados que os programas assembler. Basic é a mais fácil de todas para se aprender e as suas instruções são semelhantes à maneira de um ser humano se exprimir, mas tal como a linguagem C, é também de execução mais lenta que o assembler. Em qualquer caso, antes que escolha entre uma destas linguagens, precisa de examinar cuidadosamente os requisitos de velocidade de execução, de espaço de memória a ocupar e o tempo que vai demorar a fazer o programa em assembly. Depois de o programa estar escrito, nós necessitamos de introduzir o microcontrolador num dispositivo e pô-lo a trabalhar. Para que isto aconteça, nós precisamos de adicionar mais alguns componentes externos. Primeiro temos que dar vida ao microcontrolador fornecendo-lhe a tensão (a tensão eléctrica é necessária para que qualquer instrumento electrónico funcione) e o oscilador cujo papel é análogo ao do coração que bate no ser humano. A execução das instruções do programa é regulada pelas pulsações do oscilador. Logo que lhe é aplicada a tensão, o microcontrolador executa uma verificação dele próprio, vai para o princípio do programa e começa a executá-lo. O modo como o dispositivo vai trabalhar depende de muitos parâmetros, os mais importantes dos quais são a competência da pessoa que desenvolve o hardware e do programador que, com o seu programa, deve tirar o máximo do dispositivo. CAPÍTULO 2 Microcontrolador PIC16F84 Introdução O PIC 16F84 pertence a uma classe de microcontroladores de 8 bits, com uma arquitectura RISC. A estrutura genérica é a do mapa que se segue, que nos mostra os seus blocos básicos. Memória de programa (FLASH) - para armazenar o programa que se escreveu. Como a memória fabricada com tecnologia FLASH pode ser programa e limpa mais que uma vez. ela torna-se adequada para o desenvolvimento de dispositivos. EEPROM - memória dos dados que necessitam de ser salvaguardados quaando a alimentação é desligada. Normalmente é usada para guardar dados importantes que não se podem perder quando a alimentação, de repente, “vai abaixo”. Um exemplo deste tipo de dados é a temperatura fixada para os reguladores de temperatura. Se, durante uma quebra de alimentação, se perdessem dados, nós precisaríamos de proceder a um novo ajustamento quando a alimentação fosse restabelecida. Assim, o nosso dispositivo, perderia eficácia. RAM - memória de dados usada por um programa, durante a sua execução. Na RAM, são guardados todos os resultados intermédios ou dados temporários durante a execução do programa e que não são cruciais para o dispositivo, depois de ocorrer uma falha na alimentação. PORTO A e PORTO B são ligações fisicas entre o microcontrolador e o mundo exterior. O porto A tem cinco pinos e o porto B oito pinos. CONTADOR/TEMPORIZADOR é um registo de 8 bits no interior do microcontrolador que trabalha independentemente do programa. No fim de cada conjunto de quatro ciclos de relógio do oscilador, ele incrementa o valor armazenado, até atingir o valor máximo (255), nesta altura recomeça a contagem a partir de zero. Como nós sabemos o tempo exacto entre dois incrementos sucessivos do conteúdo do temporizador, podemos utilizar este para medir intervalos de tempo, o que o torna muito útil em vários dispositivos. UNIDADE DE PROCESSAMENTO CENTRAL faz a conexão com todos os outros blocos do microcontrolador. Ele coordena o trabalho dos outros blocos e executa o programa do utilizador. Esquema do microcontrolador PIC16F84 Arquitecturas Harvard versus von Neumann CISC, RISC Já foi dito que o PIC16F84 tem uma arquitectura RISC. Este termo é encontrado, muitas vezes, na literatura sobre computadores e necessita de ser explicada aqui, mais detalhadamente. A arquitectura de Harvard é um conceito mais recente que a de von-Neumann. Ela adveio da necessidade de pôr o microcontrolador a trabalhar mais rapidamente. Na arquitectura de Harvard, a memória de dados está separada da memória de programa. Assim, é possível uma maior fluência de dados através da unidade central de processamento e, claro, uma maior velocidade de funcionamento. A separação da memória de dados da memória de programa, faz com que as instruções possam ser representadas por palavras de mais que 8 bits. O PIC16F84, usa 14 bits para cada instrução, o que permite que que todas as instruções ocupem uma só palavra de instrução. É também típico da arquitectura Harvard ter um reportório com menos instruções que a de von-Neumann's, instruções essas, geralmente executadas apenas num único ciclo de relógio. Os microcontroladores com a arquitectura Harvard, são também designados por "microcontroladores RISC". RISC provém de Computador com um Conjunto Reduzido de Instruções (Reduced Instruction Set Computer). Os microcontroladores com uma arquitectura von-Neumann são designados por 'microcontroladores CISC'. O nome CISC deriva de Computador com um Conjunto Complexo de Instruções (Complex Instruction Set Computer). Como o PIC16F84 é um microcontrolador RISC, disso resulta que possui um número reduzido de instruções, mais precisamente 35 (por exemplo, os microcontroladores da Intel e da Motorola têm mais de cem instruções). Todas estas instruções são executadas num único ciclo, excepto no caso de instruções de salto e de ramificação. De acordo com o que o seu fabricante refere, o PIC16F84 geralmente atinge resultados de 2 para 1 na compressão de código e 4 para 1 na velocidade, em relação aos outros microcontroladores de 8 bits da sua classe. Aplicações O PIC16F84, é perfeitamente adequado para muitas variedades de aplicações, como a indústria automóvel, sensores remotos, fechaduras eléctricas e dispositivos de segurança. É também um dispositivo ideal para cartões inteligentes, bem como para dispositivos alimentados por baterias, por causa do seu baixo consumo. A memória EEPROM, faz com que se torne mais fácil usar microcontroladores em dispositivos onde o armazenamento permanente de vários parâmetros, seja necessário (códigos para transmissores, velocidade de um motor, frequências de recepção, etc.). O baixo custo, baixo consumo, facilidade de manuseamento e flexibilidade fazem com que o PIC16F84 se possa utilizar em áreas em que os microcontroladores não eram anteriormente empregues (exemplo: funções de temporização, substituição de interfaces em sistemas de grande porte, aplicações de coprocessamento, etc.). A possibilidade deste chip de ser programável no sistema (usando somente dois pinos para a transferência de dados), dão flexibilidade do produto, mesmo depois de a sua montagem e teste estarem completos. Esta capacidade, pode ser usada para criar linhas de produção e montagem, para armazenar dados de calibragem disponíveis apenas quando se proceder ao teste final ou, ainda, para aperfeiçoar os programas presentes em produtos acabados. Relógio / ciclo de instrução O relógio (clock), é quem dá o sinal de partida para o microcontrolador e é obtido a partir de um componente externo chamado “oscilador”. Se considerasse-mos que um microcontrolador era um relógio de sala, o nosso clock corresponderia ao pêndulo e emitiria um ruído correspondente ao deslocar do pêndulo. Também, a força usada para dar corda ao relógio, podia comparar-se à alimentação eléctrica. O clock do oscilador, é ligado ao microcontrolador através do pino OSC1, aqui, o circuito interno do microcontrolador divide o sinal de clock em quatro fases, Q1, Q2, Q3 e Q4 que não se sobrepõem. Estas quatro pulsações perfazem um ciclo de instrução (também chamado ciclo de máquina) e durante o qual uma instrução é executada. A execução de uma instrução, é antecedida pela extracção da instrução que está na linha seguinte. O código da instrução é extraído da memória de programa em Q1 e é escrito no registo de instrução em Q4. A descodificação e execução dessa mesma instrução, faz-se entre as fases Q1 e Q4 seguintes. No diagrama em baixo, podemos observar a relação entre o ciclo de instrução e o clock do oscilador (OSC1) assim como as fases Q1-Q4. O contador de programa (Program Counter ou PC) guarda o endereço da próxima instrução a ser executada. Pipelining Cada ciclo de instrução inclui as fases Q1, Q2, Q3 e Q4. A extracção do código de uma instrução da memória de programa, é feita num ciclo de instrução, enquanto que a sua descodificação e execução, são feitos no ciclo de instrução seguinte. Contudo, devido à sobreposição – pipelining (o microcontrolador ao mesmo tempo que executa uma instrução extrai simultaneamente da memória o código da instrução seguinte), podemos considerar que, para efeitos práticos, cada instrução demora um ciclo de instrução a ser executada. No entanto, se a instrução provocar uma mudança no conteúdo do contador de programa (PC), ou seja, se o PC não tiver que apontar para o endereço seguinte na memória de programa, mas sim para outro (como no caso de saltos ou de chamadas de subrotinas), então deverá considerar-se que a execução desta instrução demora dois ciclos. Isto acontece, porque a instrução vai ter que ser processada de novo, mas, desta vez, a partir do endereço correcto. O ciclo de chamada começa na fase Q1, escrevendo a instrução no registo de instrução (Instruction Register – IR). A descodificação e execução continua nas fases Q2, Q3 e Q4 do clock. Fluxograma das Instruções no Pipeline TCY0 é lido da memória o código da instrução MOVLW 55h (não nos interessa a instrução que foi executada, por isso não está representada por rectângulo). TCY1 é executada a instrução MOVLW 55h e é lida da memória a instrução MOVWF PORTB. TCY2 é executada a instrução MOVWF PORTB e lida a instrução CALL SUB_1. TCY3 é executada a chamada (call) de um subprograma CALL SUB_1 e é lida a instrução BSF PORTA,BIT3. Como esta instrução não é a que nos interessa, ou seja, não é a primeira instrução do subprograma SUB_1, cuja execução é o que vem a seguir, a leitura de uma instrução tem que ser feita de novo. Este é um bom exemplo de uma instrução a precisar de mais que um ciclo. TCY4 este ciclo de instrução é totalmente usado para ler a primeira instrução do subprograma no endereço SUB_1. TCY5 é executada a primeira instrução do subprograma SUB_1 e lida a instrução seguinte. Significado dos pinos O PIC16F84 tem um total de 18 pinos. É mais frequentemente encontrado num tipo de encapsulamento DIP18, mas, também pode ser encontrado numa cápsula SMD de menores dimensões que a DIP. DIP é uma abreviatura para Dual In Package (Empacotamento em duas linhas). SMD é uma abreviatura para Surface Mount Devices (Dispositivos de Montagem em Superfície), o que sugere que os pinos não precisam de passar pelos orifícios da placa em que são inseridos, quando se solda este tipo de componente. Os pinos no microcontrolador PIC16F84, têm o seguinte significado: Pino nº 1, RA2 Segundo pino do porto A. Não tem nenhuma função adicional. Pino nº 2, RA3 Terceiro pino do porto A. Não tem nenhuma função adicional. Pino nº 3, RA4 Quarto pino do porto A. O TOCK1 que funciona como entrada do temporizador, também utiliza este pino. Pino nº 4, MCLR Entrada de reset e entrada da tensão de programação Vpp do microcontrolador . Pino nº 5, Vss massa da alimentação. Pino nº 6, RB0, bit 0 do porto B. Tem uma função adicional que é a de entrada de interrupção. Pino nº 7, RB1 bit 1do porto B. Não tem nenhuma função adicional. Pino nº 8, RB2 bit 2 do porto B. Não tem nenhuma função adicional. Pino nº 9, RB3 bit 3 do porto B. Não tem nenhuma função adicional. Pino nº 10, RB4 bit 4 do porto B. Não tem nenhuma função adicional. Pino nº 11, RB5 bit 5 do porto B. Não tem nenhuma função adicional. Pino nº 12, RB6 bit 6 do porto B. No modo de programa é a linha de clock Pino nº 13, RB7 bit 7 do porto B. Linha de dados no modo de programa Pino nº 14, Vdd Pólo positivo da tensão de alimentação. 2.3 Unidade Central de Processamento A unidade central de processamento (CPU) é o cérebro de um microcontrolador. Essa parte é responsável por extrair a instrução, descodificar essa instrução e, finalmente, executá-la. Esquema da unidade central de processamento - CPU A unidade central de processamento, interliga todas as partes do microcontrolador de modo a que este se comporte como um todo. Uma das sua funções mais importante é, seguramente, descodificar as instruções do programa. Quando o programador escreve um programa, as instruções assumem um claro significado como é o caso por exemplo de MOVLW 0x20. Contudo, para que um microcontrolador possa entendê-las, esta forma escrita de uma instrução tem que ser traduzida numa série de zeros e uns que é o ‘opcode’ (operation code ou código da operação). Esta passagem de uma palavra escrita para a forma binária é executada por tradutores assembler (ou simplesmente assembler). O código da instrução extraído da memória de programa, tem que ser descodificado pela unidade central de processamento (CPU). A cada uma das instruções do reportório do microcontrolador, corresponde um conjunto de acções para a concretizar. Estas acções, podem envolver transferências de dados de um local de memória para outro, de um local de memória para os portos, e diversos cálculos, pelo que, se conclui que, o CPU, tem que estar ligado a todas as partes do microcontrolador. Os bus de de dados e o de endereço permitem-nos fazer isso. Unidade Lógica Aritmética (ALU) A unidade lógica aritmética (ALU – Arithmetic Logic Unit), é responsável pela execução de operações de adição, subtracção, deslocamento (para a esquerda ou para a direita dentro de um registo) e operações lógicas. O PIC16F84 contém uma unidade lógica aritmética de 8 bits e registos de uso genérico também de 8 bits. Unidade lógica-aritmética e como funciona Por operando nós designamos o conteúdo sobre o qual uma operação incide. Nas instruções com dois operandos, geralmente um operando está contido no registo de trabalho W (working register) e o outro operando ou é uma constante ou então está contido num dos outros registos. Esses registos podem ser “Registos de Uso Genérico” (General Purpose Registers – GPR) ou “Registos com funções especiais” (Special Function Registers – SFR). Nas instruções só com um operando, um dos operandos é o conteúdo do registo W ou o conteúdo de um dos outros registos. Quando são executadas operações lógicas ou aritméticas como é o caso da adição, a ALU controla o estado dos bits (que constam do registo de estado – STATUS). Dependendo da instrução a ser executada, a ALU, pode modificar os valores bits do Carry (C), Carry de dígito (DC) e Z (zero) no registo de estado - STATUS. Diagrama bloco mais detalhado do microcontrolador PIC16F84 Registo STATUS bit 0 C (Carry) Transporte Este bit é afectado pelas operações de adição, subtracção e deslocamento. Toma o valor ‘1’ (set), quando um valor mais pequeno é subtraído de um valor maior e toma o valor ‘0’ (reset) quando um valor maior é subtraído de um menor. 1= Ocorreu um transporte no bit mais significativo 0= Não ocorreu transporte no bit mais significativo O bit C é afectado pelas instruções ADDWF, ADDLW, SUBLW e SUBWF. bit 1 DC (Digit Carry) Transporte de dígito Este bit é afectado pelas operações de adição, subtracção. Ao contrário do anterior, DC assinala um transporte do bit 3 para o bit 4 do resultado. Este bit toma o valor ‘1’, quando um valor mais pequeno é subtraído de um valor maior e toma o valor ‘0’ quando um valor maior é subtraído de um menor. 1= Ocorreu um transporte no quarto bit mais significativo 0= Não ocorreu transporte nesse bit O bit DC é afectado pelas instruções ADDWF, ADDLW, SUBLW e SUBWF. bit 2 Z (bit Zero) Indicação de resultado igual a zero. Este bit toma o valor ‘1’ quando o resultado da operação lógica ou aritmética executada é igual a 0. 1= resultado igual a zero 0= resultado diferente de zero bit 3 PD (Bit de baixa de tensão – Power Down) Este bit é posto a ‘1’ quando o microcontrolador é alimentado e começa a trabalhar, depois de um reset normal e depois da execução da instrução CLRWDT. A instrução SLEEP põe este bit a ‘0’ ou seja, quando o microcontrolador entra no regime de baixo consumo / pouco trabalho. Este bit pode também ser posto a ‘1’, no caso de ocorrer um impulso no pino RB0/INT, uma variação nos quatro bits mais significativos do porto B, ou quando é completada uma operação de escrita na DATA EEPROM ou ainda pelo watchdog. 1 = depois de ter sido ligada a alimentação 0 = depois da execução de uma instrução SLEEP bit 4 TO Time-out ; transbordo do Watchdog Este bit é posto a ‘1’, depois de a alimentação ser ligada e depois da execução das instruções CLRWDT e SLEEP. O bit é posto a ‘0’ quando o watchdog consegue chegar ao fim da sua contagem (overflow = transbordar), o que indica que qualquer coisa não esteve bem. 1 = não ocorreu transbordo 0 = ocorreu transbordo bits 5 e 6 RP1:RP0 (bits de selecção de banco de registos) Estes dois bits são a parte mais significativa do endereço utilizado para endereçamento directo. Como as instruções que endereçam directamente a memória, dispõem somente de sete bits para este efeito, é preciso mais um bit para poder endereçar todos os 256 registos do PIC16F84. No caso do PIC16F84, RP1, não é usado, mas pode ser necessário no caso de outros microcontroladores PIC, de maior capacidade. 01 = banco de registos 1 00 = banco de registos 0 bit 7 IRP (Bit de selecção de banco de registos) Este bit é utilizado no endereçamento indirecto da RAM interna, como oitavo bit 1 = bancos 2 e 3 0 = bancos 0 e 1 (endereços de 00h a FFh) O registo de estado (STATUS), contém o estado da ALU (C, DC, Z), estado de RESET (TO, PD) e os bits para selecção do banco de memória (IRP, RP1, RP0). Considerando que a selecção do banco de memória é controlada através deste registo, ele tem que estar presente em todos os bancos. Os bancos de memória serão discutidos com mais detalhe no capítulo que trata da Organização da Memória. Se o registo STATUS for o registo de destino para instruções que afectem os bits Z, DC ou C, então não é possível escrever nestes três bits. Registo OPTION bits 0 a 2 PS0, PS1, PS2 (bits de selecção do divisor Prescaler) Estes três bits definem o factor de divisão do prescaler. Aquilo que é o prescaler e o modo como o valor destes três bits afectam o funcionamento do microcontrolador será estudado na secção referente a TMR0. bit 3 PSA (Bit de Atribuição do Prescaler) Bit que atribui o prescaler ao TMR0 ou ao watchdog. 1 = prescaler atribuído ao watchdog 0 = prescaler atribuído ao temporizador TMR0 bit 4 T0SE (bit de selecção de bordo activo em TMR0) Se for permitido aplicar impulsos em TMR0, a partir do pino RA4/TOCK1, este bit determina se os impulsos activos são os impulsos ascendentes ou os impulsos descendentes. 1 = bordo descendente 0 = bordo ascendente bit 5 TOCS (bit de selecção de fonte de clock em TMR0) Este pino escolhe a fonte de impulsos que vai ligar ao temporizador. Esta fonte pode ser o clock do microcontrolador (frequência de clock a dividir por 4) ou impulsos externos no pino RA4/TOCKI. 1 = impulsos externos 0 = ¼ do clock interno bit 6 INDEDG (bit de selecção de bordo de interrupção) Se esta interrupção estiver habilitada, é possível definir o bordo que vai activar a interrupção no pino RB0/INT. 1 = bordo ascendente 0 = bordo descendente bit 7 RBPU (Habilitação dos pull-up nos bits do porto B) Este bit introduz ou retira as resistências internas de pull-up do porto B. 1 = resistências de “pull-up” desligadas 0 = resistências de “pull-up” ligadas 2.4 Portos Porto, é um grupo de pinos num microcontrolador que podem ser acedidos simultaneamente, e, no qual nós podemos colocar uma combinação de zeros e uns ou ler dele o estado existente. Fisicamente, porto é um registo dentro de um microcontrolador que está ligado por fios aos pinos do microcontrolador. Os portos representam a conexão física da Unidade Central de Processamento (CPU) com o mundo exterior. O microcontrolador usa-os para observar ou comandar outros componentes ou dispositivos. Para aumentar a sua funcionalidade, os mesmos pinos podem ter duas aplicações distintas, como, por exemplo, RA4/TOCKI, que é simultaneamente o bit 4 do porto A e uma entrada externa para o contador/temporizador TMR0. A escolha de uma destas duas funções é feita através dos registos de configuração. Um exemplo disto é o TOCS, quinto bit do registo OPTION. Ao seleccionar uma das funções, a outra é automaticamente inibida. Relação entre os registos TRISA e PORTO A Todos os pinos dos portos podem ser definidos como de entrada ou de saída, de acordo com as necessidades do dispositivo que se está a projectar. Para definir um pino como entrada ou como saída, é preciso, em primeiro lugar, escrever no registo TRIS, a combinação apropriada de zeros e uns. Se no local apropriado de um registo TRIS for escrito o valor lógico “1”, então o correspondente pino do porto é definido como entrada, se suceder o contrário, o pino é definido como saída. Todos os portos, têm um registo TRIS associado. Assim, para o porto A, existe o registo TRISA no endereço 85h e, para o porto B existe o registo TRISB, no endereço 86h. PORTO B O porto B tem 8 pinos associados a ele. O respectivo registo de direcção de dados chama-se TRISB e tem o endereço 86h. Ao pôr a ‘1’ um bit do registo TRISB, define-se o correspondente pino do porto como entrada e se pusermos a ‘0’ um bit do registo TRISB, o pino correspondente vai ser uma saída. Cada pino do PORTO B possui uma pequena resistência de ‘pull-up’ (resistência que define a linha como tendo o valor lógico ‘1’). As resistências de pull-up são activadas pondo a ‘0’ o bit RBPU, que é o bit 7 do registo OPTION. Estas resistências de ‘pull-up’ são automaticamente desligadas quando os pinos do porto são configurados como saídas. Quando a alimentação do microcontrolador é ligada, as resistências de pull-up são também desactivadas. Quatro pinos do PORTO B, RB4 a RB7 podem causar uma interrupção, que ocorre quando qualquer deles varia do valor lógico zero para valor lógico um ou o contrário. Esta forma de interrupção só pode ocorrer se estes pinos forem configurados como entradas (se qualquer um destes 4 pinos for configurado como saída, não será gerada uma interrupção quando há variação de estado). Esta modalidade de interrupção, acompanhada da existência de resistências de pull-up internas, torna possível resolver mais facilmente problemas frequentes que podemos encontrar na prática, como por exemplo a ligação de um teclado matricial. Se as linhas de um teclado ficarem ligadas a estes pinos, sempre que se prime uma tecla, ir-se-á provocar uma interrupção. Ao processar a interrupção, o microcontrolador terá que identificar a tecla que a produziu. Não é recomendável utilizar o porto B, ao mesmo tempo que esta interrupção está a ser processada. O exemplo de cima mostra como os pinos 0, 1, 2 e 3 são definidos como entradas e 4, 5, 6 e 7 como saídas. PORTO A este tipo de endereçamento não tem quaisquer vantagens sobre o endereçamento directo, mas existem problemas que só podem ser resolvidos de uma forma simples, através do endereçamento indirecto. Endereçamento Indirecto Um exemplo pode ser enviar um conjunto de dados através de uma comunicação série, usando buffers e indicadores (que serão discutidos num capítulo mais à frente, com exemplos), outro exemplo é limpar os registos da memória RAM (16 endereços neste caso) como se pode ver a seguir. Quando o conteúdo do registo FSR é igual a zero, ler dados do registo INDF resulta no valor 0 e escrever em INDF resulta na instrução NOP (no operation = nenhuma operação). 2.6 Interrupções As interrupções são um mecanismo que o microcontrolador possui e que torna possível responder a alguns acontecimentos no momento em que eles ocorrem, qualquer que seja a tarefa que o microcontrolador esteja a executar no momento. Esta é uma parte muito importante, porque fornece a ligação entre um microcontrolador e o mundo real que nos rodeia. Geralmente, cada interrupção muda a direcção de execução do programa, suspendendo a sua execução, enquanto o microcontrolador corre um subprograma que é a rotina de atendimento de interrupção. Depois de este subprograma ter sido executado, o microcontrolador continua com o programa principal, a partir do local em que o tinha abandonado. Uma das possíveis fontes de interrupção e como afecta o programa principal O registo que controla as interrupções é chamado INTCON e tem o endereço 0Bh. O papel do INTCON é permitir ou impedir as interrupções e, mesmo no caso de elas não serem permitidas, ele toma nota de pedidos específicos, alterando o nível lógico de alguns dos seus bits. Registo INTCON bit 0 RBIF (flag que indica variação no porto B) Bit que informa que houve mudança nos níveis lógicos nos pinos 4, 5, 6 e 7 do porto B. 1= pelo menos um destes pinos mudou de nível lógico 0= não ocorreu nenhuma variação nestes pinos bit 1 INTF (flag de interrupção externa INT) Ocorrência de uma interrupção externa 1= ocorreu uma interrupção externa 0= não ocorreu uma interrupção externa Se um impulso ascendente ou descendente for detectado no pino RB0/INT, o bit INTF é posto a ‘1’ (o tipo de sensibilidade, ascendente ou descendente é definida através do bit INTEDG do registo OPTION). O subprograma de atendimento desta interrupção, deve repor este bit a ‘0’, afim de que a próxima interrupção possa ser detectada. bit 2 TOIF (Flag de interrupção por transbordo de TMR0) O contador TMR0, transbordou. 1= o contador mudou a contagem de FFh para 00h 0= o contador não transbordou Para que esta interrupção seja detectada, o programa deve pôr este bit a ‘0’ bit 3 RBIE (bit de habilitação de interrupção por variação no porto B) Permite que a interrupção por variação dos níveis lógicos nos pinos 4, 5, 6 e 7 do porto B, ocorra. 1= habilita a interrupção por variação dos níveis lógicos 0= inibe a interrupção por variação dos níveis lógicos A interrupção só pode ocorrer se RBIE e RBIF estiverem simultaneamente a ‘1’ lógico. bit 4 INTE (bit de habilitação da interrupção externa INT) bit que permite uma interrupção externa no bit RB0/ INT. 1= interrupção externa habilitada 0= interrupção externa impedida A interrupção só pode ocorrer se INTE e INTF estiverem simultaneamente a ‘1’ lógico. bit 5 TOIE (bit de habilitação de interrupção por transbordo de TMR0) bit que autoriza a interrupção por transbordo do contador TMR0. 1= interrupção autorizada 0= interrupção impedida A interrupção só pode ocorrer se TOIE e TOIF estiverem simultaneamente a ‘1’ lógico. bit 6 EEIE (bit de habilitação de interrupção por escrita completa, na EEPROM) bit que habilita uma interrupção quando uma operação de escrita na EEPROM termina. 1= interrupção habilitada 0= interrupção inibida Se EEIE e EEIF (que pertence ao registo EECON1) estiverem simultaneamente a ‘1’, a interrupção pode ocorrer. bit 7 GIE (bit de habilitação global de interrupção) bit que permite ou impede todas as interrupções 1= todas as interrupções são permitidas 0= todas as interrupções impedidas O PIC16F84 possui quatro fontes de interrupção: 1. Fim de escrita na EEPROM 2. Interrupção em TMR0 causada por transbordo do temporizador 3. Interrupção por alteração nos pinos RB4, RB5, RB6 e RB7 do porto B. 4. Interrupção externa no pino RB0/INT do microcontrolador De um modo geral, cada fonte de interrupção tem dois bits associados. Um habilita a interrupção e o outro assinala quando a interrupção ocorre. Existe um bit comum a todas as interrupções chamado GIE que pode ser usado para impedir ou habilitar todas as interrupções, simultaneamente. Este bit é muito útil quando se está a escrever um programa porque permite que todas as interrupções sejam impedidas durante um período de tempo, de tal maneira que a execução de uma parte crítica do programa não possa ser interrompida. Quando a instrução que faz GIE= 0 é executada (GIE= 0 impede todas as interrupções), todas os pedidos de interrupção pendentes, serão ignorados. Esquema das interrupções no microcontrolador PIC16F84 As interrupções que estão pendentes e que são ignoradas, são processadas quando o bit GIE é posto a ‘1’ (GIE= 1, todas as interrupções permitidas). Quando a interrupção é atendida, o bit GIE é posto a ‘0’, de tal modo que, quaisquer interrupções adicionais sejam inibidas, o endereço de retorno é guardado na pilha e, no contador de programa, é escrito 0004h – somente depois disto, é que a resposta a uma interrupção começa! Depois de a interrupção ser processada, o bit que por ter sido posto a ‘1’ permitiu a interrupção, deve agora ser reposto a ‘0’, senão, a rotina de interrupção irá ser automaticamente processada novamente, mal se efectue o regresso ao programa principal. Guardando os conteúdos dos registos importantes A única coisa que é guardada na pilha durante uma interrupção é o valor de retorno do contador de programa (por valor de retorno do contador de programa entende-se o endereço da instrução que estava para ser executada, mas que não foi, por causa de ter ocorrido a interrupção). Guardar apenas o valor do contador de programa não é, muitas vezes, suficiente. Alguns registos que já foram usados no programa principal, podem também vir a ser usados na rotina de interrupção. Se nós não salvaguardamos os seus valores, quando acontece o regresso da subrotina para o programa principal os conteúdos dos registos podem ser inteiramente diferentes, o que causaria um erro no programa. Um exemplo para este caso é o conteúdo do registo de trabalho W (work register). Se supormos que o programa principal estava a usar o registo de trabalho W nalgumas das suas operações e se ele contiver algum valor que seja importante para a instrução seguinte, então a interrupção que ocorre antes desta instrução vai alterar o valor do registo de trabalho W, indo influenciar directamente o programa principal. O procedimento para a gravação de registos importantes antes de ir para a subrotina de interrupção, designa- se por ‘PUSH’, enquanto que o procedimento que recupera esses valores, é chamado POP. PUSH e POP são instruções provenientes de outros microcontroladores (da Intel), agora esses nomes são aceites para designar estes dois processos de salvaguarda e recuperação de dados. Como o PIC16F84 não possui instruções comparáveis, elas têm que ser programadas. Uma das possíveis causas de erros é não salvaguardar dados antes de executar um subprograma de interrupção Devido à sua simplicidade e uso frequente, estas partes do programa podem ser implementadas com macros. O conceito de Macro é explicado em “Programação em linguagem Assembly”. No exemplo que se segue, os conteúdos de W e do registo STATUS são guardados nas variáveis W_TEMP e STATUS_TEMP antes de correr a rotina de interrupção. No início da rotina PUSH, nós precisamos de verificar qual o banco que está a ser seleccionado porque W_TEMP e STATUS_TEMP estão situados no banco 0. Para troca de dados entre estes dois registos, é usada a instrução SWAPF em vez de MOVF, pois a primeira não afecta os bits do registo STATUS. Exemplo é um programa assembler com os seguintes passos: 1. Verificar em que banco nos encontramos 2. Guardar o registo W qualquer que seja o banco em que nos encontramos 3. Guardar o registo STATUS no banco 0. 4. Executar a rotina de serviço de interrupção ISR (Interrupt Service Routine) 5. Recuperação do registo STATUS 6. Restaurar o valor do registo W Se existirem mais variáveis ou registos que necessitem de ser salvaguardados, então, precisamos de os guardar depois de guardar o registo STATUS (passo 3) e recuperá-los depois de restaurar o registo STATUS (passo 5). A mesma operação pode ser realizada usando macros, desta maneira obtemos um programa mais legível. Os macros que já estão definidos podem ser usados para escrever novos macros. Os macros BANK1 e BANK0 que são explicados no capítulo “Organização da memória” são usados nos macros ‘push’ e ‘pop’. Interrupção externa no pino RB0/INT do microcontrolador A interrupção externa no pino RB0/ INT é desencadeada por um impulso ascendente (se o bit INTEDG = 1 no registo OPTION<6>), ou por um impulso descendente (se INTEDG = 0). Quando o sinal correcto surge no pino INT, o bit INTF do registo INTCON é posto a ‘1’. O bit INTF (INTCON<1>) tem que ser reposto a ‘0’ na rotina de interrupção, afim de que a interrupção não possa voltar a ocorrer de novo, aquando do regresso ao programa principal. Esta é uma parte importante do programa e que o programador não pode esquecer, caso contrário o programa irá constantemente saltar para a rotina de interrupção. A interrupção pode ser inibida, pondo a ‘0’ o bit de controle INTE (INTCON<4>). Interrupção devido ao transbordar (overflow) do contador TMR0 O transbordar do contador TMR0 (passagem de FFh para 00h) vai pôr a ‘1’ o bit TOIF (INTCON<2>), Esta é uma interrupção muito importante, uma vez que, muitos problemas da vida real podem ser resolvidos utilizando esta interrupção. Um exemplo é o da medição de tempo. Se soubermos de quanto tempo o contador precisa para completar um ciclo de 00h a FFh, então, o número de interrupções multiplicado por esse intervalo de tempo, dá-nos o tempo total decorrido. Na rotina de interrupção uma variável guardada na memória RAM vai sendo incrementada, o valor dessa variável multiplicado pelo tempo que o contador precisa para um ciclo completo de contagem, vai dar o tempo gasto. Esta interrupção pode ser habilitada ou inibida, pondo a ‘1’ ou a ‘0’ o bit TOIE (INTCON<5>). Interrupção por variação nos pinos 4, 5, 6 e 7 do porto B Uma variação em 4 bits de entrada do Porto B (bits 4 a 7), põe a ‘1’ o bit RBIF (INTCON<0>). A interrupção ocorre, portanto, quando os níveis lógicos em RB7, RB6, RB5 e RB4 do porto B, mudam do valor lógico ‘1’ para o valor lógico ‘0’ ou vice-versa. Para que estes pinos detectem as variações, eles devem ser definidos como entradas. Se qualquer deles for definido como saída, nenhuma interrupção será gerada quando surgir uma variação do nível lógico. Se estes pinos forem definidos como entradas, o seu valor actual é comparado com o valor anterior, que foi guardado quando se fez a leitura anterior do porto B. Esta interrupção pode ser habilitada/inibida pondo a ‘1’ ou a ‘0’, o bit RBIE do registo INTCON. Interrupção por fim de escrita na EEPROM 0 = o prescaler está atribuído ao temporizador TMR0. bit 4 T0SE (selecção de bordo activo em TMR0) Se o temporizador estiver configurado para contar impulsos externos aplicados ao pino RA4/T0CKI, este bit vai determinar quando a contagem irá incidir sobre os impulsos ascendentes ou descendentes do sinal. 1 = bordo descendente 0 = bordo ascendente bit 5 T0CS (bit de selecção de fonte de clock para TMR0) Este pino habilita o contador/temporizador TMR0 a incrementar o seu valor ou com os impulsos do oscilador interno, isto é, a 1/4 das oscilações do clock do oscilador, ou através de impulsos externos aplicados ao pino RA4/T0CKI. 1 = impulsos externos 0 = 1/4 do clock interno bit 6 INTEDG (bit de selecção do bordo activo da interrupção) Se a ocorrência de interrupções estiver habilitada, este bit vai determinar qual o bordo em que a interrupção no pino RB0/INT vai ocorrer. 1 = bordo ascendente 0 = bordo descendente bit 7 RBPU (Bit de habilitação dos pull-up no porto B) Este bit introduz ou retira as resistências de pull-up internas do porto B. 1 = resistências de 'pull-up' inseridas 0 = resistências de 'pull-up' retiradas 2.8 Memória de dados EEPROM O PIC16F84 tem 64 bytes de localizações de memória EEPROM, correspondentes aos endereços de 00h a 63h e onde podemos ler e escrever. A característica mais importante desta memória é de não perder o seu conteúdo quando a alimentação é desligada. Na prática, isso significa que o que lá foi escrito permanece no microcontrolador, mesmo quando a alimentação é desligada. Sem alimentação, estes dados permanecem no microcontrolador durante mais de 40 anos (especificações do fabricante do microcontrolador PIC16F84), além disso, esta memória suporta até 10000 operações de escrita. Na prática, a memória EEPROM é usada para guardar dados importantes ou alguns parâmetros de processamento. Um parâmetro deste tipo, é uma dada temperatura, atribuída quando ajustamos um regulador de temperatura para um processo. Se esse valor se perder, seria necessário reintroduzi-lo sempre que houvesse uma falha na alimentação. Como isto é impraticável (e mesmo perigoso), os fabricantes de microcontroladores começaram a instalar nestes uma pequena quantidade de memória EEPROM. A memória EEPROM é colocada num espaço de memória especial e pode ser acedida através de registos especiais. Estes registos são: • EEDATA no endereço 08h, que contém o dado lido ou aquele que se quer escrever. • EEADR no endereço 09h, que contém o endereço do local da EEPROM que vai ser acedido • EECON1 no endereço 88h, que contém os bits de controle. • EECON2 no endereço 89h. Este registo não existe fisicamente e serve para proteger a EEPROM de uma escrita acidental. O registo EECON1 ocupa o endereço 88h e é um registo de controle com cinco bits implementados. Os bits 5, 6 e 7 não são usados e, se forem lidos, são sempre iguais a zero. Os bits do registo EECON1, devem ser interpretados do modo que se segue. Registo EECON1 bit 0 RD (bit de controle de leitura) Ao pôr este bit a '1', tem início a transferência do dado do endereço definido em EEADR para o registo EEDATA. Como o tempo não é essencial, tanto na leitura como na escrita, o dado de EEDATA pode já ser usado na instrução seguinte. 1 = inicia a leitura 0 = não inicia a leitura bit 1 WR (bit de controle de escrita) Pôr este bit a '1' faz iniciar-se a escrita do dadoo a partir do registo EEDATA para o endereço especificado no registo EEADR. 1 = inicia a escrita 0 = não inicia a escrita bit 2 WREN (bit de habilitação de escrita na EEPROM). Permite a escrita na EEPROM. Se este bit não estiver a um, o microcontrolador não permite a escrita na EEPROM. 1 = a escrita é permitida 0 = não se pode escrever bit 3 WRERR ( Erro de escrita na EEPROM). Erro durante a escrita na EEPROM Este bit é posto a '1' só em casos em que a escrita na EEPROM tenha sido interrompida por um sinal de reset ou por um transbordo no temporizador do watchdog (no caso de este estar activo). 1 = ocorreu um erro 0 = não houve erros bit 4 EEIF (bit de interrupção por operação de escrita na EEPROM completa) Bit usado para informar que a escrita do dadoo na EEPROM, terminou. Quando a escrita tiver terminado, este bit é automaticamente posto a '1'. O programador tem que repôr a '0' o bit EEIF no seu programa, para que possa detectar o fim de uma nova operação de escrita. 1 = escrita terminada 0 = a escrita ainda não terminou ou não começou. Lendo a Memória EEPROM Pondo a ‘1’ o bit RD inicia-se a transferência do dado do endereço guardado no registo EEADR para o registo EEDATA. Como para ler os dados não é preciso tanto tempo como a escrevê-los, os dados extraídos do registo EEDATA podem já ser usados na instrução seguinte. Uma porção de um programa que leia um dado da EEPROM, pode ser semelhante ao seguinte: Depois da última instrução do programa, o conteúdo do endereço 0 da EEPROM pode ser encontrado no registo de trabalho w. Escrevendo na Memória EEPROM Para escrever dados num local da EEPROM, o programador tem primeiro que endereçar o registo EEADR e introduzir a palavra de dados no registo EEDATA. A seguir, deve colocar-se o bit WR a ‘1’, o que faz desencadear o processo. O bit WR deverá ser posto a ‘0’ e o bit EEIF será posto a ‘1’ a seguir à operação de escrita, o que pode ser usado no processamento de interrupções. Os valores 55h e AAh são as primeira e segunda chaves que tornam impossível que ocorra uma escrita acidental na EEPROM. Estes dois valores são escritos em EECON2 que serve apenas para isto, ou seja, para receber estes dois valores e assim prevenir contra uma escrita acidental na memória EEPROM. As linhas do programa marcadas como 1, 2, 3 e 4 têm que ser executadas por esta ordem em intervalos de tempo certos. Portanto, é muito importante desactivar as interrupções que possam interferir com a temporização necessária para executar estas instruções. Depois da operação de escrita, as interrupções podem, finalmente, ser de novo habilitadas. Exemplo da porção de programa que escreve a palavra 0xEE no primeiro endereço da memória EEPROM: CAPÍTULO 3 Conjunto de Instruções Introdução Já dissemos que um microcontrolador não é como qualquer outro circuito integrado. Quando saem da cadeia de produção, a maioria dos circuitos integrados, estão prontos para serem introduzidos nos dispositivos, o que não é o caso dos microcontroladores. Para que um microcontrolador cumpra a sua tarefa, nós temos que lhe dizer exactamente o que fazer, ou, por outras palavras, nós temos que escrever o programa que o microcontrolador vai executar. Neste capítulo iremos descrever as instruções que constituem o assembler, ou seja, a linguagem de baixo nível para os microcontroladores PIC. Conjunto de Instruções da Família PIC16Cxx de Microcontroladores O conjunto completo compreende 35 instruções e mostra-se na tabela que se segue. Uma razão para este pequeno número de instruções resulta principalmente do facto de estarmos a falar de um microcontrolador RISC cujas instruções foram optimizadas tendo em vista a rapidez de funcionamento, simplicidade de arquitectura e compacidade de código. O único inconveniente, é que o programador tem que dominar a técnica “desconfortável” de fazer o programa com apenas 35 instruções. Transferência de dados A transferência de dados num microcontrolador, ocorre entre o registo de trabalho (W) e um registo ‘f’ que representa um qualquer local de memória na RAM interna (quer se trate de um registo especial ou de um registo de uso genérico). As primeiras três instruções (observe a tabela seguinte) referem-se à escrita de uma constante no registo W (MOVLW é uma abreviatura para MOVa Literal para W), à cópia de um dado do registo W na RAM e à cópia de um dado de um registo da RAM no registo W (ou nele próprio, caso em que apenas a flag do zero é afectada) . A instrução CLRF escreve a constante 0 no registo ‘f’ e CLRW escreve a constante 0 no registo W. A instrução SWAPF troca o nibble (conjunto de 4 bits) mais significativo com o nibble menos significativo de um registo, passando o primeiro a ser o menos significativo e o outro o mais significativo do registo. Lógicas e aritméticas De todas as operações aritméticas possíveis, os microcontroladores PIC, tal como a grande maioria dos outros microcontroladores, apenas suportam a subtracção e a adição. Os bits ou flags C, DC e Z, são afectados conforme o resultado da adição ou da subtracção, com uma única excepção: uma vez que a subtracção é executada como uma adição com um número negativo, a flag C (Carry), comporta-se inversamente no que diz respeito à subtracção. Por outras palavras, é posta a ‘1’ se a operação é possível e posta a ‘0’ se um número maior tiver que ser subtraído de outro mais pequeno. A lógica dentro do PIC tem a capacidade de executar as operações AND, OR, EX-OR, complemento (COMF) e rotações (RLF e RRF). Estas últimas instruções, rodam o conteúdo do registo através desse registo e da flag C de uma casa para a esquerda (na direcção do bit 7), ou para a direita (na direcção do bit 0). O bit que sai do registo é escrito na flag C e o conteúdo anterior desta flag, é escrito no bit situado do lado oposto no registo. Operações sobre bits As instruções BCF e BSF põem a ‘0’ ou a ‘1’ qualquer bit de qualquer sítio da memória. Apesar de parecer uma operação simples, ela é executada do seguinte modo, o CPU primeiro lê o byte completo, altera o valor de um bit e, a seguir, escreve o byte completo no mesmo sítio. Direcção de execução de um programa por "sintaxe". No exemplo que se segue, é possível reconhecer erros de escrita, dado que as instruções movlp e gotto não existem no microcontrolador PIC16F84. Operandos Operandos são os elementos da instrução necessários para que a instrução possa ser executada. Normalmente são registos, variáveis e constantes. As constantes são designadas por “literais”. A palavra literal significa “número”. Comentários Comentário é um texto que o programador escreve no programa afim de tornar este mais claro e legível. É colocado logo a seguir a uma instrução e deve começar com uma semi-vírgula ";". Directivas Uma directiva é parecida com uma instrução mas, ao contrário desta, é independente do tipo de microcontrolador e é uma característica inerente à própria linguagem assembly. As directivas servem-se de variáveis ou registos para satisfazer determinados propósitos. Por exemplo, NIVEL, pode ser uma designação para uma variável localizada no endereço 0Dh da memória RAM. Deste modo, a variável que reside nesse endereço, pode ser acedida pela palavra NIVEL. É muito mais fácil a um programador recordar a palavra NIVEL, que lembrar-se que o endereço 0Dh contém informação sobre o nível. Exemplo de como se escreve um programa O exemplo que se segue, mostra como um programa simples pode ser escrito em linguagem assembly, respeitando regras básicas. Quado se escreve um programa, além das regras fundamentais, existem princípios que, embora não obrigatórios é conveniente, serem seguidos. Um deles, é escrever no seu início, o nome do programa, aquilo que o programa faz, a versão deste, a data em que foi escrito, tipo de microcontrolador para o qual foi escrito e o nome do programador. Uma vez que estes dados não interessam ao tradutor de assembly, são escritos na forma de comentários. Deve ter-se em atenção que um comentário começa sempre com ponto e vírgula e pode ser colocado na linha seguinte ou logo a seguir à instrução. Depois deste comentário inicial ter sido escrito, devem incluir-se as directivas. Isto mostra-se no exemplo de cima. Para que o seu funcionamento seja correcto, é preciso definir vários parâmetros para o microcontrolador, tais como: - tipo de oscilador - quando o temporizador do watchdog está ligado e - quando o circuito interno de reset está habilitado. Tudo isto é definido na directiva seguinte: __CONFIG _CP_OFF & _WDT_OFF & _PWRTE_ON & _XT_OSC Logo que todos os elementos de que precisamos tenham sido definidos, podemos começar a escrever o programa. Primeiro, é necessário definir o endereço para que o microcontrolador deve ir quando se liga a alimentação. É esta a finalidade de (org 0x00). O endereço para onde um programa salta se ocorrer uma interrupção é (org 0x04). Como este é um programa simples, é suficiente dirigir o microcontrolador para o início de um programa com uma instrução "goto Main" (Main = programa principal). As instruções encontradas em Main, seleccionam o banco 1 (BANK1) de modo a poder aceder-se ao registo TRISB, afim de que o porto B seja definido como uma saída (movlw 0x00, movwf TRISB). O próximo passo é seleccionar o banco de memória 0 e colocar os bits do porto B no estado lógico ‘1’ e, assim, o programa principal fica terminado. É preciso, no entanto, um outro ciclo (loop), onde o microcontrolador possa permanecer sem que ocorram erros. Trata-se de um ‘loop’ infinito que é executado continuamente, enquanto a alimentação não for desligada. Finalmente, é necessário colocar a palavra “end" no fim de cada programa, de modo a informar o tradutor de assembly de que o programa não contém mais instruções. Directivas de controle 4.1 #DEFINE Troca de uma porção de texto por outra Sintaxe: #define<nome> [< texto atribuído a nome > ] Descrição: De cada vez que a palavra <nome> aparece no programa, vai ser substituída por <texto atribuído a nome>. Exemplo: #define ligado 1 #define desligado 0 Directivas similares: #UNDEFINE, IFDEF, IFNDEF 4.2 INCLUDE Incluir um ficheiro adicional num programa Sintaxe: include <<nome_do_ficheiro>> include “<nome_do_ficheiro>” Descrição: A aplicação desta directiva faz com que um ficheiro completo seja copiado para o local em que a directiva “include” se encontra. Se o nome do ficheiro estiver entre aspas, estamos a lidar com um ficheiro do sistema, se não estiver entre aspas, mas sim entre os sinais < >, trata-se de um ficheiro do utilizador. A directiva “include”, contribui para uma melhor apresentação do programa principal. Exemplo: include < regs.h > include “subprog.asm” 4.3 CONSTANT Atribui um valor numérico constante a uma designação textual Sintaxe: constant < nome > = < valor > Descrição: Cada vez que < nome > aparece no programa, é substituído por < valor > . Exemplo: constant MAXIMO = 100 constant Comprimento = 30 Directivas similares: SET, VARIABLE 4.4 VARIABLE Atribui um valor numérico variável à designação textual Sintaxe: variable < nome > = < valor > Descrição: Ao utilizar esta directiva, a designação textual muda o seu valor. Difere da directiva CONSTANT no facto de, depois de a directiva ser aplicada, o valor da designação textual poder variar. Exemplo: variable nivel = 20 variable tempo = 13 Directivas similares: SET, CONSTANT 4.5 SET Definir uma variável assembler Sintaxe: < nome_variavel > set <valor> Descrição: À variável < nome_variavel > é atribuída a expressão <valor> . A directiva SET é semelhante a EQU, mas com a directiva SET é possível tornar a definir a variável com outro valor. Exemplo: nivel set 0 comprimento set 12 nivel set 45 Directivas similares: EQU, VARIABLE 4.6 EQU Definindo uma constante em assembler Sintaxe: < nome_da_constante > equ < valor > Descrição: Ao nome de uma constante < nome_de_constante > é atribuído um valor < valor > Exemplo: cinco equ 5 seis equ 6 sete equ 7 Instruções similares: SET 4.7 ORG Define o endereço a partir do qual o programa é armazenado na memória do microcontrolador Sintaxe: <rótulo> org <valor> Descrição: Esta é a directiva mais frequentemente usada. Com esta directiva nós definimos em que sítio na memória de programa o programa vai começar. Exemplo: Inicio org 0x00 movlw 0xFF movwf PORTB Estas duas instruções a seguir à directiva 'org', são guardadas a partir do endereço 00. 4.8 END Fim do programa Sintaxe: end Descrição: No fim do programa, é necessário colocar a directiva 'end', para que o tradutor do assembly (assembler), saiba que não existem mais instruções no programa. Directivas similares: #DEFINE, ELSE, ENDIF, IFDEF, #UNDEFINE Directivas de Dados 4.16 CBLOCK Definir um bloco para as constantes nomeadas Sintaxe: Cblock [< termo >] <rótulo> [:<incremente>], <rótulo> [:<incremente>]...... Endc Descrição: Esta directiva é usada para atribuir valores às constantes a seguir nomeadas. A cada termo seguinte, é atribuído um valor superior em uma unidade ao anterior. No caso de <incremente> estar preenchido, então é o valor de <incremente> que é adicionado à constante anterior. O valor do parâmetro <termo>, é o valor inicial. Se não for dado, então, por defeito, é considerado igual a zero. Exemplo: cblock 0x02 primeiro, segundo ; primeiro = 0x02, segundo = 0x03 terceiro ;terceiro = 0x04 endc cblock 0x02 primeiro : 4, segundo : 2 ; primeiro = 0x06, segundo = 0x08 terceiro ; terceiro = 0x09 endc Directivas similares: ENDC 4.17 ENDC Fim da definição de um bloco de constantes Sintaxe: endc Descrição: Esta directiva é utilizada no fim da definição de um bloco de constantes, para que o tradutor de assembly saiba que não há mais constantes. Directivas similares: CBLOCK 4.18 DB Definir um byte de dados Sintaxe: [<termo>] db <termo> [, <termo>,......,<termo>] Descrição: Esta directiva reserva um byte na memória de programa. Quando há mais termos a quem é preciso atribuir bytes, eles serão atribuídos um após outro. Exemplo: db ‘t’, 0x0f, ‘e’, ‘s', 0x12 Instruções similares: DE, DT 4.19 DE – Definir byte na memória EEPROM Sintaxe: [<termo>] de <termo> [, <termo>,......,<termo>] Descrição: Esta directiva reserva um byte na memória EEPROM. Apesar de ser destinada em primeiro lugar para a memória EEPROM, também pode ser usada em qualquer outro local de memória. Exemplo: org H’2100’ de “Versão 1.0”, 0 Directivas similares: DB, DT 4.20 DT Definindo uma tabela de dados Sintaxe: [<termo>] dt <termo> [, <termo>,......,<termo>] Descrição: Esta directiva vai gerar uma série de instruções RETLW, uma instrução para cada termo. dt “Mensagem” , 0 dt primeiro, segundo, terceiro Directivas similares: DB, DE Configurando uma directiva 4.21 __CONFIG Estabelecer os bits de configuração Sintaxe: __config<termo> ou __config <endereço>, <termo> Descrição: São definidos o tipo de oscilador, e a utilização do watchdog e do circuito de reset interno. Antes de usar esta directiva, tem que declarar-se o processador através da directiva PROCESSOR. Exemplo: __CONFIG _CP_OFF & _WDT_OFF & PWRTE_ON & _XT_OSC Directivas similares: __IDLOCS, PROCESSOR 4.22 PROCESSOR Definindo o modelo de microcontrolador Sintaxe: processor <tipo_de_microcontrolador> Descrição: Esta directiva, estabelece o tipo de microcontrolador em que o programa vai correr. Exemplo: processor 16f84 Operadores aritméticos de assembler Ficheiros criados ao compilar um programa Os ficheiros resultantes da tradução de um programa escrito em linguagem assembly são os seguintes: • Ficheiro de execução (nome_do_programa.hex) • Ficheiro de erros no programa (nome_do_programa.err) • Ficheiro de listagem (nome_do_programa.lst) O primeiro ficheiro contém o programa traduzido e que vai ser introduzido no microcontrolador quando este é programado. O conteúdo deste ficheiro não dá grande informação ao programador, por isso, não o iremos mais abordar. O segundo ficheiro contém erros possíveis que foram cometidos no processo de escrita e que foram notificados pelo assembler durante a tradução. Estes erros também são mencionados no ficheiro de listagem “list”. No entanto é preferível utilizar este ficheiro de erros “err”, em casos em que o ficheiro “lst” é muito grande e, portanto, difícil de consultar. O terceiro ficheiro é o mais útil para o programador. Contém muita informação tal como o posicionamento das instruções e variáveis na memória e a sinalização dos erros. A seguir, apresenta-se o ficheiro ‘list’ do programa deste capítulo. No início de cada página, encontra-se informação acerca do nome do ficheiro, data em que foi criado e número de página. A primeira coluna, contém o endereço da memória de programa, onde a instrução mencionada nessa linha, é colocada. A segunda coluna, contém os valores de quaisquer símbolos definidos com as directivas: SET, EQU, VARIABLE, CONSTANT ou CBLOCK. A terceira coluna, tem, o código da instrução que o PIC irá executar. A quarta coluna contém instruções assembler e comentários do programador. Possíveis erros são mencionados entre as linhas, a seguir à linha em que o erro ocorreu. No fim do ficheiro de listagem, é apresentada uma tabela dos símbolos usados no programa. Uma característica útil do ficheiro ‘list’ é a apresentação de um mapa da memória utilizada. Mesmo no fim, existe uma estatística dos erros, bem como a indicação da memória de programa utilizada e da disponível. Macros As macros são elementos muito úteis em linguagem assembly. Uma macro pode ser descrita em poucas palavras como “um grupo de instruções definido pelo utilizador que é acrescentado ao programa pelo assembler, sempre que a macro for invocada”. É possível escrever um programa sem usar macros. Mas, se as utilizarmos, o programa torna-se muito mais legível, especialmente se estiverem vários programadores a trabalhar no mesmo programa. As macros têm afinidades com as funções nas linguagens de alto nível. Como as escrever: <rótulo> macro [<argumento1>,<argumento2>,.....,<argumentoN>] ......... ......... endm Pelo modo como são escritas, vemos que as macros podem aceitar argumentos, o que também é muito útil em programação. Quando o argumento é invocado no interior de uma macro, ele vai ser substituído pelo valor <argumentoN>. Exemplo: O exemplo de cima, mostra uma macro cujo propósito é enviar para o porto B, o argumento ARG1, definido quando a macro foi invocada. Para a utilizarmos num programa, basta escrever uma única linha: ON_PORTB 0xFF e, assim, colocamos o valor 0xFF no porto B. Para utilizar uma macro no programa, é necessário incluir o ficheiro macro no programa principal, por intermédio da instrução #include “nome_da_macro.inc”. O conteúdo da macro é automaticamente copiado para o local em que esta macro está escrita. Isto pode ver-se melhor no ficheiro ‘lst’ visto atrás, onde a macro é copiada por baixo da linha #include “bank.inc”. CAPÍTULO 5 MPLAB Introdução O MPLAB é um pacote de programas que correm no Windows e que tornam mais fácil escrever ou desenvolver um programa. Pode descrever-se ainda melhor como sendo um ambiente de desenvolvimento para uma linguagem de programação standard e destinado a correr num computador pessoal (PC). Anteriormente, as Depois de clicar em ‘Finish’, a instalação do MPLAB está terminada. 5.2 MPLAB Quando terminamos o processo de instalação, aparece-nos no écran o programa propriamente dito. Como pode ver-se, o aspecto do MPLAB é o mesmo da maioria dos programas Windows. Perto da área de trabalho existe um “menu” (faixa azul em cima, com as opções File, Edit, etc.), “toolbar” (barra com figuras que preenchem pequenos quadrados) e a linha de status no fundo da janela. Assim, pretende-se seguir uma regra no Windows que é tornar também acessíveis por baixo do menu, as opções usadas mais frequentemente no programa,. Deste modo, é possível acedê-las de um modo mais fácil e tornar o nosso trabalho mais rápido. Ou seja, aquilo que está disponível na barra de ferramentas, também está disponível no menu. O écran depois de o MPLAB ser iniciado O propósito deste capítulo é familiarizá-lo com o ambiente de desenvolvimento MPLAB e com elementos básicos do MPLAB, tais como: Escolher um modo de desenvolvimento Designar um projecto Designar um ficheiro para o programa original Escrever um programa elementar na linguagem de programação assembler Traduzir um programa para linguagem máquina Iniciar o programa Abrir uma nova janela de simulação Abrir uma nova janela para as variáveis cujos valores queremos observar (watch window) Guardar a janela para as variáveis cujos valores queremos observar (janela anterior) Definir breakpoints no simulador (pontos de paragem) A preparação de um programa para ser lido num microcontrolador compreende várias etapas básicas: 5.3 Escolhendo o modo de desenvolvimento Para que o MPLAB possa saber que ferramentas vão ser usadas na execução do programa que se escreveu, é necessário definir o modo de desenvolvimento. No nosso caso, nós precisamos de preparar o simulador como preparamos uma ferramenta que vamos usar. Clicando em OPTIONS---> DEVELOPMENT MODE, uma nova janela idêntica à que se mostra na figura em baixo, irá aparecer: Definindo um modo de desenvolvimento Nós devemos seleccionar a opção ‘MPLAB-SIM Simulator’, porque é neste ambiente que o nosso programa vai ser experimentado. Além desta opção, está também disponível a opção ‘Editor Only’ (somente editor). Esta última opção só é usada, se o que desejamos é apenas escrever o programa e usar um programador para transferir um ‘ficheiro hex’ para o microcontrolador. A selecção do modelo de microcontrolador é feita no lado direito. Como o livro é baseado no PIC16F84, é este o modelo de microcontrolador que deve ser seleccionado. Normalmente, quando começamos a trabalhar com microcontroladores, usamos um simulador. Depois, à medida que o nível dos nossos conhecimentos sobe, podemos escrever o programa no microcontrolador, logo após a sua tradução. O nosso conselho, é que você use sempre o simulador. Embora possa parecer que, assim, o programa demora mais tempo a implementar, no fim vai ver que vale a pena. 5.4 Implementando um projecto Para começar a escrever um programa é preciso primeiro criar um projecto. Clicando em PROJECT --> NEW PROJECT você pode dar um nome ao seu projecto e guardá-lo num directório à sua escolha. Na figura em baixo, um projecto designado por 'test.pjt' está a ser criado e é guardado no directório c:\PIC\PROJEKTI\ . Escolheu-se este directório porque os autores têm este directório no seu computador. De um modo genérico, escolhe-se um directório que está contido noutro directório maior e cujo nome deve fazer lembrar os ficheiros que contém. Abrindo um novo projecto Depois de dar um nome ao projecto clique em OK. Veremos que aparece uma nova janela, idêntica à que se mostra na figura seguinte. Ajuste dos elementos do projecto Com o rato, clique em "proba [.hex]”, o que activa a opção 'Node properties', ao fundo no lado direito. Clicando esta opção, obtém-se a janela seguinte. Definindo os parâmetros do assembler MPASM Na figura pode verificar-se que existem muitos parâmetros diferentes. Cada um deles, corresponde a um termo na “linha de comandos”. Como memorizar estes parâmetros é bastante desconfortável ou mesmo proibitivo para principiantes, foi introduzida possibilidade de um ajuste feito graficamente. Observando a figura, verifica- se rapidamente quais as opções que estão seleccionadas. Clicando em OK, voltamos à janela anterior onde "Add node" é agora uma opção activa. Clicando nela, obtemos a seguinte janela onde vamos dar o um nome ao nosso programa assembler. Vamos chamar-lhe "Proba.asm", e vai ser o nosso primeiro programa em MPLAB. Abrindo um novo projecto Clicando em OK, voltamos à janela de inicial onde vemos adicionado um ficheiro assembler. Um ficheiro assembler foi adicionado Clicando em OK voltamos ao ambiente MPLAB. 5.5 Criando um novo ficheiro assembler (escrevendo um novo programa) Depois de a parte de criação de "project", ter terminado, é altura de começarmos a escrever um programa. Por outras palavras, um novo ficheiro deve ser aberto e vai ser designado por "proba.asm". No nosso caso, o ficheiro tem que ser designado por "proba.asm" porque, em projectos constituídos por um único ficheiro (como é o caso do nosso), o nome do projecto e o nome do ficheiro fonte tem que ser o mesmo. Para abrir um novo ficheiro, clica-se em FILE>NEW. Assim, obtemos uma janela de texto dentro do espaço de trabalho do MPLAB. Um novo ficheiro assembler foi aberto A nova janela representa o ficheiro onde o programa vai ser escrito. Como o nosso ficheiro assembler tem que ser designado por "proba.asm", vamos dar-lhe esse nome. A designação do programa faz-se (como em todos os programas Windows) clicando em FILE>SAVE AS. Deste modo, vamos obter uma janela análoga à que se mostra na figura seguinte. Dando um nome e guardando um novo ficheiro assembler Quando obtemos esta janela, precisamos de escrever 'proba.asm' por baixo de 'File name:' e clicar em OK. Depois de fazer isto, podemos ver o nome do ficheiro 'proba.asm', no cimo da nossa janela. 5.6 Escrevendo um programa Só depois de completadas todas as operações precedentes é que nós podemos começar a escrever um programa. Como já dispomos de um programa simples que foi escrito na parte do livro "Programação em Linguagem Assembler", vamos usar esse programa aqui, também. Este programa tem que ser copiado numa janela que esteja aberta, ou copiado do disco ou tirado da página da internet da MikroElektronika usando os comandos copiar e colar. Quando o programa é copiado para a janela "proba.asm", nós podemos usar o comando PROJECT -> BUILD ALL (se não existirem erros) e, uma nova janela idêntica à representada na figura seguinte, vai aparecer. Janela com as mensagens que se sucedem à tradução do programa assembler Na figura podemos observar que obtemos o ficheiro "proba.hex" como resultado do processo de tradução, que é usado o programa MPASMWIN para traduzir e que existe uma mensagem. De toda essa informação, a última frase que aparece na janela é a mais importante, já que nos diz se a tradução foi ou não bem sucedida. 'Build completed successfully' é uma mensagem que nos indica que a tradução foi feita com sucesso e que não apareceram erros. No caso de serem indicados erros, precisamos de clicar duplamente nas mensagens de erros da janela 'Build Results'. Este acto, transfere-nos automaticamente para o programa assembler e para a linha em que o erro se encontra. 5.7 Simulador MPSIM Simulador, é a parte do ambiente MPLAB que fornece uma melhor visão interna do modo como o microcontrolador trabalha. Através de um simulador nós podemos monitorizar os valores actuais das variáveis, os valores dos registos e os estados lógicos dos pinos dos portos. Para falar verdade, o simulador não dá exactamente os mesmos resultados em todos os programas. Se um programa for simples (como aquele que estamos a utilizar como exemplo), a simulação não é de grande importância, porque pôr todos os pinos do porto B a nível lógico um, não é uma tarefa difícil. Contudo, o simulador pode ser uma grande ajuda em programas mais complicados que incluem temporizadores, diferentes condições em que alguma coisa aconteça e outros requisitos semelhantes (especialmente com operações matemáticas). Simulação, como o próprio nome indica, "simula o funcionamento de um microcontrolador". Como o microcontrolador executa as instruções uma a uma, o simulador é concebido para executar o programa passo a passo (linha a linha), mostrando o que acontece aos dados dentro do microcontrolador. Quando o programa está completamente escrito, convém que o programador, em primeiro lugar, verifique o seu programa num simulador e, só a seguir o experimente numa situação real. Infelizmente, muitas vezes as pessoas esquecem-se dos bons hábitos e passam por cima desta etapa. As razões disto passam pela maneira de ser das pessoas e pela falta de bons simuladores. A primeira coisa que precisamos de fazer numa situação real, é o reset do microcontrolador com o comando DEBUG > RUN > RESET. Este comando faz com que surja em negrito a linha de início do programa e que, o contador de programa contenha o valor zero como se pode verificar na linha de estado (pc: 0x00). O início da simulação do programa faz-se com o reset do microcontrolador Uma das principais características de um simulador, é a possibilidade de observar o estado dos registos dentro do microcontrolador. Principalmente os registos com funções especiais (SFR). È possível abrir uma janela com os registos SFR, clicando em WINDOW->SPECIAL FUNCTION REGISTERS, ou, no ícone SFR. Além dos registos SFR, pode ser útil observar os conteúdos dos outros registos. Uma janela com as filas- registos pode ser aberta, clicando em WINDOW->FILE REGISTERS. Se existirem variáveis no programa, também é conveniente observá-las. A cada variável pode ser atribuída uma janela (Watch Windows) clicando em WINDOW->WATCH WINDOWS. Simulador com janelas abertas para registos SFR, filas registos e variáveis O próximo comando num simulador é DEBUG>RUN>STEP que inicia a simulação passo a passo do programa. O mesmo comando pode ser introduzido através da tecla <F7> do teclado (de um modo geral, todos os comandos mais significativos têm teclas atribuídas no teclado). Utilizando a tecla F7, o programa é executado passo-a-passo. Quando utilizamos uma macro, o ficheiro que contém a macro é aberto (Bank.inc) e podemos prosseguir através da macro. Na janela dos registos SFR, podemos observar como o registo de trabalho W recebe o valor 0xFF e como este valor é transferido para o porto B. Clicando de novo em F7 nós não conseguimos nada porque o programa entra num "loop infinito". Loop infinito é um termo que iremos encontrar muitas vezes. Representa um loop (laço) do qual o microcontrolador não pode sair, a menos que ocorra uma interrupção (se o programa utilizar interrupções) ou, então, quando é executado o reset do microcontrolador. De um modo geral, uma tensão de alimentação correcta é da maior importância para o bom funcionamento do sistema de microcontrolador. Pode comparar-se este sistema a um homem que precisa de respirar. É provável que um homem que respire ar puro viva mais tempo que um que viva num ambiente poluído. Para que um microcontrolador funcione convenientemente, é necessário usar uma fonte de alimentação estável, uma função de ‘reset ao ligar’ fiável e um oscilador. De acordo com as especificações técnicas fornecidas pelo fabricante do microcontrolador PIC, em todas as versões, a tensão de alimentação deve estar compreendida entre 2,0V e 6,0V. A solução mais simples para a fonte de alimentação é utilizar um regulador de tensão LM7805 que fornece, na sua saída, uma tensão estável de +5V. Uma fonte com estas características, mostra-se na figura em baixo. Para que o circuito funcione correctamente, de modo a obter-se 5V estáveis na saída (pino 3), a tensão de entrada no pino 1 do LM7805 deve situar-se entre 7V e 24V. Dependendo do consumo do dispositivo, assim devemos usar o tipo de regulador LM7805 apropriado. Existem várias versões do LM7805. Para um consumo de corrente até 1A, deve usar-se a versão TO-220, com um dissipador de calor apropriado. Se o consumo for somente de 50mA, pode usar-se o 78L05 (regulador com empacotamento TO92 de menores dimensões para correntes até 100mA). 6.2 Utilização de macros em programas Os exemplos que se apresentam nas secções seguintes deste capítulo, vão utilizar frequentemente as macros WAIT, WAITX e PRINT, por isso elas vão ser explicadas com detalhe. Macros WAIT, WAITX O ficheiro Wait.inc contém duas macros WAIT e WAITX. Através destas macros é possível conseguir diferentes intervalos de tempo. Ambas as macros usam o preenchimento do contador TMR0 como intervalo de tempo básico. Modificando o valor do prescaler, nós podemos variar o intervalo de tempo correspondente ao enchimento do contador TMR0. Se usarmos um oscilador (ressonador) de 4MHz e para valores do prescaler de 0, 1 e 7 a dividir o clock básico do oscilador, os intervalos de tempo causados por transbordo do temporizador TMR0, serão nestes três casos de respectivamente 0,512mS, 1,02mS e 65,3mS. Na prática isso significa que o maior intervalo de tempo possível será de 256x65,3mS = 16,72 segundos. Para se poderem usar macros no programa principal, é necessário declarar as variáveis wcycle e prescWAIT, como é feito nos exemplos que se seguem neste capítulo. A Macro WAIT tem um argumento. O valor standard atribuído ao prescaler nesta macro é 1 (1,02mS) e não pode ser alterado. WAIT timeconst_1 timeconst_1 é um número de 0 a 255. Multiplicando esse número pelo tempo de enchimento, obtemos o tempo total: TEMPO=timeconst_1 x 1,02mS. Exemplo: WAIT .100 O exemplo mostra como gerar um atraso de 100x1,02mS no total de 102mS. Ao contrário da macro WAIT, a macro WAITX tem mais um argumento que serve para atribuir um valor ao prescaler. Os dois argumentos da macro WAITX são : Timeconst_2 é um número entre 0 e 255. Multiplicando esse número pelo tempo de enchimento, obtemos o tempo total: TIME=timeconst_1 x 1,02mS x PRESCext PRESCext é um número entre 0 e 7 que estabelece a relação entre o clock e o temporizador TMR0. Exemplo: WAITX .100, 7 O exemplo mostra como gerar um intervalo de tempo de 100x65,3 mS, ou seja, de 6,53S. MACRO PRINT A Macro PRINT encontra-se no ficheiro Print.inc. Esta macro facilita o envio de uma série de dados ou caracteres para dispositivos de saída tais como: display LCD, RS232, impressora matricial, ...,etc. A melhor maneira de formar a série, é usar uma directiva dt (definir tabela). Esta instrução guarda uma série de dados na memória de programa, na forma de um grupo de instruções retlw cujos operandos são os caracteres da cadeia de caracteres. O modo como uma sequência é formada usando uma instrução dt, mostra-se no seguinte exemplo: org 0x00 goto Main String movwf PCL String1 dt “esta é a cadeia ‘ASCII’” String2 dt “Segunda série” End Main movlw .5 call String A primeira instrução depois do rótulo Main, escreve a posição de um membro da cadeia (string) no registo w. A seguir, com a instrução call saltamos para o rótulo string, onde a posição de um membro da sequência é adicionada ao valor do contador de programa: PCL=PCL+W. A seguir, teremos no contador de programa um endereço da instrução retlw com o membro da cadeia desejado. Quando esta instrução é executada, o membro da cadeia vai ficar no registo w e o endereço da instrução a executar depois da instrução call estará guardado no contador de programa. O rótulo END é um módulo elegante de marcar o endereço em que a cadeia termina. A Macro PRINT possui cinco argumentos: PRINT macro Addr, Start, End, Var, Out Addr é um endereço onde uma ou mais cadeias (que se seguem uma após outra) começam. Start é o endereço do primeiro caracter da cadeia. End é o endereço em que a cadeia termina Var é a variável que tem o papel de mostrar (apontar) os membros da cadeia Out é um argumento que usamos para enviar o endereço do subprograma que trabalha com os dispositivos de saída, tais como: LCD, RS-232 etc. A macro PRINT escreve uma série de caracteres ASCII, correspondentes a ‘MikroElektronika’ no display LCD. A cadeia ocupa uma parte da memória de programa a começar no endereço 0x03. 6.3 Exemplos Díodos Emissores de Luz - LEDs Os LEDs são seguramente uns dos componentes mais usados em electrónica. LED é uma abreviatura para ‘Light Emitting Diode’ (Díodo emissor de luz). Quando se escolhe um LED, vários parâmetros devem ter-se em atenção: diâmetro, que é usualmente de 3 ou 5mm (milímetros), corrente de funcionamento, habitualmente de cerca de 10mA (pode ser menor que 2mA para LEDs de alta eficiência – alta luminosidade) e, claro, a cor que pode ser essencialmente vermelha ou verde, embora também existam amarelos, laranjas, azuis, etc. Os LEDs, para emitirem luz, têm que ser ligados com a polaridade correcta e a resistência de limitação de corrente tem também que ter o valor correcto para que o LED não se estrague por sobreaquecimento. O pólo positivo da alimentação deve estar do lado do ânodo e o negativo do lado do cátodo. Para identificar os terminais do led, podemos ter em atenção que, normalmente, o terminal do cátodo é mais curto e, junto deste, a base do LED é plana. Os LED’s só emitem luz se a corrente fluir do ânodo para o cátodo. Se for ao contrário, a junção PN fica polarizada inversamente e, a corrente, não passa. Para que o LED funcione correctamente, deve ser adicionada uma resistência em série com este, que vai limitar a corrente através do LED, evitando que este se queime. O valor desta resistência é determinado pelo valor da corrente que se quer que passe através do LED. A corrente máxima que pode atravessar um LED está estabelecida pelo fabricante. Os LEDs de alto rendimento podem produzir uma saída muito satisfatória com uma corrente de 2mA. Para determinar o valor da resistência em série, nós necessitamos de saber o valor da alimentação. A este valor vamos subtrair a queda de tensão característica no LED. Este valor pode variar entre 1,2v e 1,6v, dependendo da cor do LED. O resultado desta subtracção é a queda de tensão na resistência Ur. Sabendo esta tensão e a corrente, determinamos o valor da resistência usando a fórmula R=Ur/I . Os LEDs podem ser ligados ao microcontrolador de duas maneiras. Uma é faze-los acender com o nível lógico zero e a outra com o nível lógico um. O primeiro método é designado por lógica NEGATIVA e o outro por lógica POSITIVA. O diagrama de cima, mostra como se faz a ligação utilizando lógica POSITIVA. Como em lógica POSITIVA se aplica uma voltagem de +5V ao díodo em série com a resistência, ele vai emitir luz sempre que o pino do porto B forneça um valor lógico 1 (1 = saída Alta). A lógica NEGATIVA requer que o LED fique com o ânodo ligado ao terminal positivo da alimentação e o cátodo ligado ao pino porto B, através da resistência. Neste caso, quando uma saída Baixa do microcontrolador é aplicada à resistência em série com o LED, este acende. Ligação dos díodos LED ao Porto B do microcontrolador O exemplo que se segue, define o porto B como de saída e põe a nível lógico um todos os pinos deste porto, acendendo os LEDs. Teclado As teclas de um teclado, são dispositivos mecânicos usados para desfazer ou estabelecer as ligações entre pares de pontos. As teclas podem aparecer com vários tamanhos e satisfazer vários propósitos. As teclas ou interruptores que vamos usar são também designadas por “teclas-dip”. Elas são muito usadas em electrónica e são soldadas directamente na placa de circuito impresso. Possuem quatro pinos (dois para cada contacto), o que lhes confere uma boa estabilidade mecânica. Exemplo de ligação de teclas, aos pinos do microcontrolador Exemplo de um optoacoplador ligado a uma linha de saída O programa para este exemplo é simples. Fornecendo um nível lógico ‘1’ ao pino 3 do porto A, o LED vai ser activado e o transistor do optoacoplador vai conduzir. A corrente limite para este transistor é de cerca de 250mA. O Relé Um relé é um dispositivo electromecânico que transforma um sinal eléctrico em movimento mecânico. É constituído por uma bobina de fio de cobre isolado, enrolado à volta de um núcleo ferromagnético e por uma armadura metálica com um ou mais contactos. Quando a tensão de alimentação é ligada à bobina, esta vai ser atravessada por uma corrente e vai produzir um campo magnético que atrai a armadura fechando uns contactos e /ou abrindo outros. Quando a alimentação do relé é desligada, o fluxo magnético da bobina irá desaparecer e estabelece-se uma corrente por vezes muito intensa em sentido inverso, para se opor à variação do fluxo. Esta corrente, pode danificar o transistor que está a fornecer a corrente, por isso, um díodo polarizado inversamente deve ser ligado aos terminais da bobina, para curto circuitar a corrente de rotura. Ligando um relé a um microcontrolador, através de um transistor Muitos microcontroladores não conseguem alimentar um relé directamente e, assim, é necessário acrescentar um transistor ao circuito para obter a corrente necessária. Um nível ALTO na base do transistor, faz este conduzir, activando o relé. O relé pode estar ligado a partir dos seus contactos a qualquer dispositivo eléctrico. Uma resistência de 10k limita a corrente na base do transistor. A outra resistência de 10k entre o pino do microcontrolador e a massa, evita que um ruído na base do transistor faça actuar o relé intempestivamente. Deste modo, só um sinal bem definido proveniente do microcontrolador pode activar o relé. Ligando o optoacoplador e um relé a um microcontrolador Um relé pode também ser activado através de um optoacoplador que actua como “buffer” de corrente e ao mesmo tempo aumenta a resistência de isolamento. Estes optoacopladores capazes de fornecerem uma corrente muito grande, contêm normalmente um transistor ‘Darlington’ na saída. A ligação através de um optoacoplador é recomendada especialmente em aplicações de microcontroladores que controlam motores, já que o ruído provocado pela actuação dos comutadores, pode regressar ao microcontrolador através das linhas da alimentação. O optoacoplador faz actuar o relé e este activa o motor. A figura em baixo, é um exemplo de um programa de activação do relé e inclui algumas macros anteriormente apresentadas. Produzindo um som Um diafragma pizoeléctrico pode ser adicionado a uma linha de saída do microcontrolador para se obterem tons, bips e sinais. É importante saber-se que existem dois tipos de dispositivos pizo emissores de som. Um, contém componentes activos encontram-se dentro do envólucro e só precisam de que lhe seja aplicada uma tensão contínua que emita um tom ou um bip. Geralmente os tons ou bips emitidos por estes dispositivos sonoros não podem mudar, pois são fixados pelos respectivos circuitos internos. Não é este o tipo de dispositivo que vamos discutir neste artigo. O outro tipo requer, para que possa funcionar, que lhe seja aplicado um sinal. Dependendo da frequência da forma de onda, a saída pode ser um tom, uma melodia, um alarme ou mesmo mensagens de voz. Para o pormos a funcionar, vamos fornecer-lhe uma forma de onda constituída por níveis Alto e Baixo sucessivos. É a mudança de nível ALTO para BAIXO ou de BAIXO para ALTO que faz com que o diafragma se mova para produzir um pequeno som característico. A forma de onda pode corresponder a uma mudança gradual (onda sinusoidal) ou uma variação rápida (onda rectangular). Um computador é um instrumento ideal para produzir uma onda quadrada. Quando se utiliza a onda quadrada produz-se um som mais áspero. Ligar um diafragma pizoeléctrico é uma tarefa simples. Um pino é ligado à massa e o outro à saída do microcontrolador, como se mostra na figura em baixo. Deste modo, aplica-se uma forma de onda rectangular de 5v ao pizo. Para produzir um alto nível de saída, a forma de onda aplicada tem que ter uma maior grandeza, o que requer um transistor e uma bobina. Ligação de um diafragma pizoeléctrico a um microcontrolador Como no caso de uma tecla, podemos utilizar uma macro que forneça uma ROTINA BEEP ao programa, quando for necessário. BEEP macro freq, duration: freq: frequência do som. Um número maior produz uma frequência mais alta. duration: duração do som. Quanto maior o número, mais longo é o som. Exemplo 1: BEEP 0xFF, 0x02 Nesta caso, a saída do dispositivo pizoeléctrico, tem a maior frequência possível e a duração de 2 ciclos de 65,3mS o que dá 130,6mS. Exemplo 2: BEEP 0x90, 0x05 Aqui, a saída do diafragma pizoeléctrico, tem uma frequência de 0x90 e uma duração de 5 ciclos de 65,3mS. É melhor experimentar diversos argumentos para a macro e seleccionar aquele que melhor se aplica. A seguir, mostra-se a listagem da Macro BEEP: O exemplo que se segue, mostra o uso de uma macro num programa. O programa produz duas melodias que são obtidas, premindo T1 ou T2. Algumas das macros apresentadas anteriormente são utilizadas no programa. Registos de deslocamento Existem dois tipos de registos de deslocamento: de entrada paralelo e registo de saída paralelo. Os registos de deslocamento de entrada recebem os dados em paralelo, através de 8 linhas e enviam-nos em série para o microcontrolador, através de duas linhas. Os registos de deslocamento de saída trabalham ao contrário, recebem os dados em série e quando uma linha é habilitada esses dados ficam disponíveis em paralelo em oito linhas. Os registos de deslocamento são normalmente usados para aumentar o número de linhas de entrada e de saída de um microcontrolador. Actualmente não são tão usados, já que os microcontroladores mais modernos dispõem de um grande número de linhas de entrada e de saída. No caso dos microcontroladores PIC16F84, o seu uso pode ser justificado. Registo de deslocamento de entrada 74HC597 Os registos de deslocamento de entrada, transformam os dados paralelo em dados série e transferem-nos em série para o microcontrolador. O modo de funcionamento é muito simples. São usadas quatro linhas para transferir os dados: clock, latch, load e data. Os dados são lidos primeiro dos pinos de entrada para um registo interno quando uma linha ‘latch’ é activada. A seguir, com um sinal ‘load’ activo, os dados passam do registo interno, para o registo de deslocamento e, daqui, são transferidos para o microcontrolador por meio das linhas ‘data’ (saída série) e ‘clock’. O esquema de ligações do registo de deslocamento 74HC597 ao microcontrolador, mostra-se a seguir: Ligação de um registo de deslocamento de entrada paralelo a um microcontrolador Para simplificar o programa principal, pode ser usada uma macro para o registo de deslocamento de entrada paralelo. A macro HC597 tem dois argumentos: HC597 macro Var, Var1 Var variável para onde os estados lógicos dos pinos de entrada do registo de deslocamento de entrada paralelo, são transferidos Var1 contador de ciclos Exemplo: HC597 dados, contador Os dados provenientes dos pinos de entrada do registo de deslocamento são guardados na variável dados. O contador/temporizador é usado como contador de ciclos. Listagem da macro: Um exemplo de como usar a macro HC597 mostra-se no programa seguinte. Neste programa, é suposto que o byte de dados é recebido nas entradas paralelo do registo de deslocamento, a partir deste, os bits saem em série e entram no microcontrolador onde são guardados na variável RX. Os LEDs ligados ao Porto B visualizam a palavra de dados. Registo de deslocamento de entrada paralela Os registos de deslocamento de entrada série e saída paralela, transformam dados série em dados paralelo. Sempre que ocorre um impulso ascendente de clock, o registo de deslocamento lê o estado lógico da linha de dados, guarda-o num registo temporário e repete oito vezes esta operação. Quando a linha ‘latch’ é activada, os dados são copiados do registo de deslocamento para o registo de saída (registo latch) onde ficam disponíveis em paralelo. As ligações entre um registo de deslocamento 74HC595 e um microcontrolador, mostram-se no diagrama em baixo. Ligação de um registo de deslocamento de saída paralelo a um microcontrolador A macro usada neste exemplo é o ficheiro hc595.inc e é designada por HC595. A macro HC595 tem dois argumentos: HC595 macro Var, Var1 Var variável cujo conteúdo é transferido para as saídas do registo de deslocamento. Var1 contador de ciclos (loops) Exemplo: HC595 Dados, contador O dado que queremos transferir, é guardado na variável dados e a variável contador é usada como contador de ciclos. A.5 CLRF Escrever 0 em f Sintaxe: [rótulo] CLRF f Descrição: O conteúdo do registo ‘f’ passa para 0 e a flag Z do registo STATUS toma o valor 1. Operação: 0F 0 D E f Operando: F 0 A 30 fF 0 A 3 127 Flag: Z Número de palavras: 1 Número de ciclos: 1 Exemplo 1: CLRF STATUS Antes da instrução: STATUS = 0xC2 Depois da instrução: STATUS = 0x00 Z = 1 Exemplo 2: CLRF INDF Antes da instrução: FSR = 0xC2 conteúdo do endereço 0xC2 = 0x33 Depois da instrução: FSR = 0xC2 conteúdo do endereço 0xC2 = 0x00 Z = 1 A.6 SWAPF Copiar o conteúdo de f para d, trocando a posição dos 4 primeiros bits com a dos 4 últimos Sintaxe: [rótulo] SWAPF f, d Descrição: Os 4 bits + significativos e os 4 bits – significativos de f, trocam de posições. Se d = 0, o resultado é guardado no registo W Se d = 1, o resultado é guardado no registo f Operação: f <0:3F 0 D E> d <4:7>, f <4:7F 0 D E> d <0:3>, Operando: F 0 A 30 fF 0 A 3 127, F 0 C Ed [0, 1] Flag: - Número de palavras: 1 Número de ciclos: 1 Exemplo 1: SWAPF REG, 0 Antes da instrução: REG = 0xF3 Depois da instrução: REG = 0xF3 W = 0x3F Exemplo 2: SWAPF REG, 1 Antes da instrução: REG = 0xF3 Depois da instrução: REG = 0x3F A.7 ADDLW Adicionar W a uma constante Sintaxe: [rótulo] ADDLW k Descrição: O conteúdo do registo W, é adicionado à constante de 8-bits k e o resultado é guardado no registo W. Operação: ( W ) + F 0 D Ek W Operando: F 0 A 30 kF 0 A 3 255 Flag: C, DC, Z Número de palavras: 1 Número de ciclos: 1 Exemplo 1: ADDLW 0x15 Antes da instrução: W= 0x10 Depois da instrução: W= 0x25 Exemplo 2: ADDLW REG Antes da instrução: W = 0x10 REG = 0x37 Depois da instrução: W = 0x47 A.8 ADDWF Adicionar W a f Sintaxe: [rótulo] ADDWF f, d Descrição: Adicionar os conteúdos dos registos W e f Se d=0, o resultado é guardado no registo W Se d=1, o resultado é guardado no registo f Operação: (W) + ( f )F 0 D E d, dF 0 C E [0, 1] Operando: F 0 A 30 fF 0 A 3 127 Flag: C, DC, Z Número de palavras: 1 Número de ciclos: 1 Exemplo 1: ADDWF FSR, 0 Antes da instrução: W = 0x17 FSR = 0xC2 Depois da instrução: W = 0xD9 FSR = 0xC2 Exemplo 2: ADDWF INDF,0 Antes da instrução: W = 0x17 FSR = 0xC2 conteúdo do endereço 0xC2 = 0x20 Depois da instrução: W = 0x37 FSR = 0xC2 Conteúdo do endereço 0xC2 = 0x20 A.9 SUBLW Subtrair W a uma constante Sintaxe: [rótulo] SUBLW k Descrição: O conteúdo do registo W, é subtraído à constante k e, o resultado, é guardado no registo W. Operação: k - ( W ) F 0 D E W Operando: F 0 A 30 kF 0 A 3 255 Flag: C, DC, Z Número de palavras: 1 Número de ciclos: 1 Exemplo 1: SUBLW 0x03 Antes da instrução: W= 0x01, C = x, Z = x Depois da instrução: W= 0x02, C = 1, Z = 0 Resultado > 0 Antes da instrução: W= 0x03, C = x, Z = x Depois da instrução: W= 0x00, C = 1, Z = 1 Resultado = 0 Antes da instrução: W= 0x04, C = x, Z = x Depois da instrução: W= 0xFF, C = 0, Z = 0 Resultado < 0 Exemplo 2: SUBLW REG Antes da instrução: W = 0x10 REG = 0x37 Depois da instrução: W = 0x27 C = 1 Resultado > 0 A.10 SUBWF Subtrair W a f Sintaxe: [rótulo] SUBWF f, d Descrição: O conteúdo do registo W é subtraído ao conteúdo do registo f Se d=0, o resultado é guardado no registo W Se d=1, o resultado é guardado no registo f Operação: ( f ) - (W) F 0 D E d Operando: F 0 A 30 fF 0 A 3 127, dF 0 C E [0, 1] Flag: C, DC, Z Número de palavras: 1 Número de ciclos: 1 Exemplo: SUBWF REG, 1 Antes da instrução: REG= 3, W= 2, C = x, Z = x Depois da instrução: REG= 1, W= 2, C = 1, Z = 0 Resultado > 0 Antes da instrução: REG= 2, W= 2, C = x, Z = x Depois da instrução: REG=0, W= 2, C = 1, Z = 1 Resultado = 0 Antes da instrução: REG=1, W= 2, C = x, Z = x Depois da instrução: REG= 0xFF, W=2, C = 0, Z = 0 Resultado < 0 A.11 ANDLW Fazer o “E” lógico de W com uma constante Sintaxe: [rótulo] ANDLW k Descrição: É executado o “E” lógico do conteúdo do registo W, com a constante k O resultado é guardado no registo W. Operação: ( W ) .AND. F 0 D Ek W Operando: F 0 A 30 kF 0 A 3 255 Flag: Z Número de palavras: 1 Número de ciclos: 1 Exemplo 1: ANDLW 0x5F Sintaxe: [rótulo] XORWF f, d Descrição: Faz o “OU-EXCLUSIVO” dos conteúdos dos registos W e f Se d=0, o resultado é guardado no registo W Se d=1, o resultado é guardado no registo f Operação: (W) .XOR. ( f )F 0 D E d Operando: F 0 A 30 fF 0 A 3 127, dF 0 C E [0, 1] Flag: Z Número de palavras: 1 Número de ciclos: 1 Exemplo 1: XORWF REG, 1 Antes da instrução: REG= 0xAF, W= 0xB5 ; 1010 1111 (0xAF) ; 1011 0101 (0xB5) Depois da instrução: REG= 0x1A, W= 0xB5 001 1010 (0x1A) Exemplo 2: XORWF REG, 0 Antes da instrução: REG= 0xAF, W= 0xB5; 1010 1111 (0xAF) ; 1011 0101 (0xB5) Depois da instrução: REG= 0xAF, W= 0x1A ; 0001 1010 (0x1A) A.17 INCF Incrementar f Sintaxe: [rótulo] INCF f, d Descrição: Incrementar de uma unidade, o conteúdo do registo f. Se d=0, o resultado é guardado no registo W Se d=1, o resultado é guardado no registo f Operação: ( f ) + 1F 0 D E d Operando: F 0 A 30 fF 0 A 3 127, dF 0 C E [0, 1] Flag: Z Número de palavras: 1 Número de ciclos: 1 Exemplo 1: INCF REG, 1 Antes da instrução: REG = 0xFF Z = 0 Depois da instrução: REG = 0x00 Z = 1 Exemplo 2: INCF REG, 0 Antes da instrução: REG = 0x10 W = x Z = 0 Depois da instrução: REG = 0x10 W = 0x11 Z = 0 A.18 DECF Decrementar f Sintaxe: [rótulo] DECF f, d Descrição: Decrementar de uma unidade, o conteúdo do registo f. Se d=0, o resultado é guardado no registo W Se d=1, o resultado é guardado no registo f Operação: ( f ) - 1F 0 D E d Operando: F 0 A 30 fF 0 A 3 127, dF 0 C E [0, 1] Flag: Z Número de palavras: 1 Número de ciclos: 1 Exemplo 1: DECF REG, 1 Antes da instrução: REG = 0x01 Z = 0 Depois da instrução: REG = 0x00 Z = 1 Exemplo 2: DECF REG, 0 Antes da instrução: REG = 0x13 W = x Z = 0 Depois da instrução: REG = 0x13 W = 0x12 Z = 0 A.19 RLF Rodar f para a esquerda através do Carry Sintaxe: [rótulo] RLF f, d Descrição: O conteúdo do registo f é rodado um espaço para a esquerda, através de C (flag do Carry). Se d=0, o resultado é guardado no registo W Se d=1, o resultado é guardado no registo f Operação: ( f <n>) F 0 D E d<n+1>, f<7> F 0 D E C, C F 0 D E d<0>; Operando: F 0 A 30 fF 0 A 3 127, dF 0 C E [0, 1] Flag: C Número de palavras: 1 Número de ciclos: 1 Exemplo 1: RLF REG, 0 Antes da instrução: REG = 1110 0110 C = 0 Depois da instrução: REG = 1110 0110 W = 1100 1100 C = 1 Exemplo 2: RLF REG, 1 Antes da instrução: REG = 1110 0110 C = 0 Depois da instrução: REG = 1100 1100 C = 1 A.20 RRF Rodar f para a direita através do Carry Sintaxe: [rótulo] RRF f, d Descrição: O conteúdo do registo f é rodado um espaço para a direita, através de C (flag do Carry). Se d=0, o resultado é guardado no registo W Se d=1, o resultado é guardado no registo f Operação: ( f <n>) F 0 D E d<n-1>, f<0> F 0 D E C, C F 0 D E d<7>; Operando: F 0 A 30 fF 0 A 3 127, dF 0 C E [0, 1] Flag: C Número de palavras: 1 Número de ciclos: 1 Exemplo 1: RRF REG, 0 Antes da instrução: REG = 1110 0110 W = x C = 0 Depois da instrução: REG = 1110 0110 W = 0111 0011 C = 0 Exemplo 2: RRF REG, 1 Antes da instrução: REG = 1110 0110 C = 0 Depois da instrução: REG = 0111 0011 C = 0 A.21 COMF Complementar f Sintaxe: [rótulo] COMF f, d Descrição: O conteúdo do registo f é complementado. Se d=0, o resultado é guardado no registo W Se d=1, o resultado é guardado no registo f Operação: ( f F 0 D E) d Operando: F 0 A 30 fF 0 A 3 127, dF 0 C E [0, 1] Flag: Z Número de palavras: 1 Número de ciclos: 1 Exemplo 1: COMF REG, 0 Antes da instrução: REG= 0x13 ; 0001 0011 (0x13) Depois da instrução: REG= 0x13 ; complementar W = 0xEC ; 1110 1100 (0xEC) Exemplo 2: COMF INDF, 1 Antes da instrução: FSR= 0xC2 conteúdo de FSR = (FSR) = 0xAA Depois da instrução: FSR= 0xC2 conteúdo de FSR = (FSR) = 0x55 A.22 BCF Pôr a “0” o bit b de f Sintaxe: [rótulo] BCF f, b Descrição: Limpar (pôr a ‘0’), o bit b do registo f Operação: 0F 0 D E f<b> Operando: F 0 A 30 fF 0 A 3 127, F 0 A 30 bF 0 A 3 7 Flag: - Número de palavras: 1 Número de ciclos: 1 Exemplo 1: BCF REG, 7 Antes da instrução: REG = 0xC7 ; 1100 0111 (0xC7) Depois da instrução: REG = 0x47 ; 0100 0111 (0x47) A.27 DECFSZ Decrementar f, saltar por cima se der = 0 Sintaxe: [rótulo] DECFSZ f, d Descrição: O conteúdo do registo f é decrementado uma unidade. Se d = 0, o resultado é guardado no registo W. Se d = 1, o resultado é guardado no registo f. Se o resultado do decremento for = 0, a instrução seguinte é substituída por uma instrução NOP, fazendo assim com que a instrução actual, demore dois ciclos de instrução a ser executada. Operação: (f) - 1 F 0 D E d Operando: F 0 A 30 fF 0 A 3 127, dF 0 C E [0, 1] Flag: - Número de palavras: 1 Número de ciclos: 1 ou 2 dependendo do resultado Exemplo: LAB_01 DECFSZ REG, 1; Decrementar o conteúdo de REG de uma unidade LAB_02 ........... ; Ignorar esta linha se resultado = 0 LAB_03 ........... ; Executar esta linha depois da anterior, se der 0 Conteúdo do contador de programa antes da instrução, PC = endereço LAB_01. Se o conteúdo do registo REG depois de a operação REG = REG – 1 ter sido executada, for REG = 0, o contador de programa aponta para o rótulo de endereço LAB_03. Caso contrário, o contador de programa contém o endereço da instrução seguinte, ou seja, LAB_02. A.28 GOTO Saltar para o endereço Sintaxe: [rótulo] GOTO k Descrição: Salto incondicional para o endereço k. Operação: F 0 D Ek PC<10:0>, (PCLATH<4:3>) F 0 D E PC<12:11> Operando: F 0 A 30 kF 0 A 3 2048 Flag: - Número de palavras: 1 Número de ciclos: 2 Exemplo: LAB_00 GOTO LAB_01; Saltar para LAB_01 : LAB_01 ............ Antes da instrução: PC = endereço LAB_00 Depois da instrução: PC = endereço LAB_01 A.29 CALL Chamar um programa Sintaxe: [rótulo] CALL k Descrição: Esta instrução, chama um subprograma. Primeiro, o endereço de retorno (PC+1) é guardado na pilha, a seguir, o operando k de 11 bits, correspondente ao endereço de início do subprograma, vai para o contador de programa (PC). Operação: PC+1 F 0 D E Topo da pilha (TOS – Top Of Stack) Operando: F 0 A 30 kF 0 A 3 2048 Flag: - Número de palavras: 1 Número de ciclos: 2 Exemplo: LAB_00 CALL LAB_02 ; Chamar a subrotina LAB_02 LAB_01 : : LAB_02 ............ Antes da instrução: PC = endereço LAB_00 TOS = x Depois da instrução: PC = endereço LAB_02 TOS = LAB_01 A.30 RETURN Retorno de um subprograma Sintaxe: [rótulo] RETURN Descrição: O conteúdo do topo da pilha é guardado no contador de programa. Operação: TOSF 0 D E Contador de programa PC Operando: - Flag: - Número de palavras: 1 Número de ciclos: 2 Exemplo: RETURN Antes da instrução: PC = x TOS = x Depois da instrução: PC = TOS TOS = TOS - 1 A.31 RETLW Retorno de um subprograma com uma constante em W Sintaxe: [rótulo] RETLW k Descrição: A constante k de 8 bits, é guardada no registo W. Operação: (k)F 0 D E W; TOSF 0 D E PC Operando: F 0 A 3F 0 A 30 k 255 Flag: - Número de palavras: 1 Número de ciclos: 2 Exemplo: RETLW 0x43 Antes da instrução: W = x PC = x TOS = x Depois da instrução: W = 0x43 PC = TOS TOS = TOS – 1 A.32 RETFIE Retorno de uma rotina de interrupção Sintaxe: [rótulo] RETLW k Descrição: Retorno de uma subrotina de atendimento de interrupção. O conteúdo do topo de pilha (TOS), é transferido para o contador de programa (PC). Ao mesmo tempo, as interrupções são habilitadas, pois o bit GIE de habilitação global das interrupções, é posto a ‘1’. Operação: TOSF 0 D E PC ; 1F 0 D E GIE Operando: - Flag: - Número de palavras: 1 Número de ciclos: 2 Exemplo: RETFIE Antes da instrução: PC = x GIE = 0 Depois da instrução: PC = TOS GIE = 1 A.33 NOP Nenhuma operação Sintaxe: [rótulo] NOP Descrição: Nenhuma operação é executada, nem qualquer flag é afectada. Operação: - Operando: - Flag: - Número de palavras: 1 Número de ciclos: 1 Exemplo: NOP A.34 CLRWDT Iniciar o temporizador do watchdog Sintaxe: [rótulo] CLRWDT Descrição: O temporizador do watchdog é reposto a zero. O prescaler do temporizador de Watchdog é também reposto a 0 e, também, os bits do registo de estado TO e PD são postos a ‘um’. Operação: 0F 0 D E WDT 0F 0 D E prescaler de WDT 1F 0 D E TO 1F 0 D E PD Operando: - Flag: TO e PD Número de palavras: 1 Número de ciclos: 1 Exemplo: CLRWDT Antes da instrução: Contador de WDT = x Prescaler de WDT = 1:128 Depois da instrução: Contador do WDT = 0x00 Prescale do WDT = 0 TO =1 PD =1 A.35 SLEEP Modo de repouso Sintaxe: [rótulo] SLEEP Descrição: O processador entra no modo de baixo consumo. O oscilador pára. O bit PD (Power Down) do registo Status é reposto a ‘0’. O bit TO (Timer Out) é posto a ‘1’. O temporizador de WDT (Watchdog) e o respectivo prescaler são repostos a ‘0’. Operação: 0F 0 D E WDT 0F 0 D E prescaler do WDT 1 F 0 D EF 0 2 0F 0 5 4F 0 4 F 0 F 0 D EF 0 2 0PD A subtracção, tal como a adição, obedece ao mesmo princípio. O resultado de subtrairmos dois zeros ou dois uns, é zero. Se quisermos subtrair ‘1’ a ‘0’, temos que pedir emprestado ‘1’ ao dígito binário imediatamente à esquerda no número. Exemplo: Para verificar o resultado, tal como fizemos para a adição, convertemos o subtraendo e o subtrator para decimal e, assim, obtemos respectivamente os números 10 e 9. A diferença dá 1, que foi o valor que obtivemos. B.3 Sistema numérico hexadecimal O sistema numérico hexadecimal, tem uma base igual a 16. Se a base é 16, vamos precisar de 16 símbolos diferentes para algarismos. No sistema hexadecimal, os algarismos são: “0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F”. As letras A, B, C, D, E e F correspondem respectivamente aos decimais 10, 11, 12, 13, 14 e 15. Escolhemos estes símbolos, afim de tornar a escrita dos números mais fácil. Tal como para o caso do sistema binário, também aqui, nós podemos determinar, através da mesma fórmula, qual o maior número decimal que é possível representar com um determinado número de algarismos hexadecimais. Exemplo: Com dois algarismos hexadecimais Geralmente, os números hexadecimais são escritos com um prefixo “$” ou “0x”, ou com o sufixo “h”, para realçar o sistema numérico que estamos a utilizar. Assim, o número hexadecimal A37E, pode ainda ser mais correctamente escrito como $A37E, 0xA37E ou A37Eh. Para traduzirmos um número hexadecimal para o sistema numérico binário, não é necessário executar qualquer cálculo mas, simplesmente, substituir cada algarismo do número pelos dígitos binários que o representam. Como o valor máximo representado por um algarismo no sistema hexadecimal é 15, isso significa que são precisos 4 dígitos binários, para cada algarismo hexadecimal. Exemplo: Se convertermos ambos os membros da identidade para o sistema numérico decimal, obtemos, em ambos os casos, o número decimal 228, o que comprova que não nos enganamos. Para obter o equivalente decimal a um número hexadecimal, precisamos de multiplicar cada algarismo do número, por uma potência de 16, cujo expoente, deve corresponder à posição desse algarismo, no número hexadecimal. Em seguida, deve-se adicionar todos os resultados obtidos. Exemplo: A adição, também é executada, tal como nos dois exemplos precedentes. Exemplo: Quando adicionamos dois algarismos hexadecimais, se a respectiva soma for igual a 16, escrevemos ‘0’ na posição respectiva e adicionamos uma unidade á soma dos dois algarismos que se seguem. Quer dizer, se a soma dos dois algarismos for, por exemplo, 19 (19 = 16 +3) escrevemos ‘3’ nessa posição e, transferimos o ‘1’ para o algarismo imediatamente a seguir. Se verificarmos, a primeira parcela é o número 14891 e a segunda parcela da soma é 43457. A soma das duas parcelas é 58348, que coincide com o equivalente decimal do número hexadecimal $E3EC. A subtracção, também segue um processo idêntico ao dos dois outros sistemas. Se o algarismo do subtraendo for menor que o do subtrator, é necessário decrementar de uma unidade, o algarismo seguinte no subtraendo. Exemplo: Analisando o resultado, verificamos que o subtraendo e o subtrator, correspondem, respectivamente, aos decimais 11590 e 5970, a diferença é 5620, que é o número que obtemos se fizermos a conversão de $15F4, para o sistema numérico decimal. Conclusão O sistema numérico binário é ainda o mais utilizado, o decimal é o mais fácil de perceber e o hexadecimal situa-se entre estes dois sistemas. O sistema hexadecimal é fácil de memorizar e fácil de converter para o sistema binário, o que faz, com que seja, um dos mais importantes sistemas numéricos. Apêndice C Glossário Introdução Como em muitos outros campos da actividade humana, também no caso dos microcontroladores existem termos frequentemente usados e consensualmente adoptados (a partir dos quais outras definições e noções são criadas). Assim, o correcto entendimento de ideias base, permitem apreender, mais facilmente, outras ideias. Microcontrolador É um microprocessador e vários periféricos num único componente electrónico. Pino de Entrada/Saída (I/O) Pino de ligação externa do microcontrolador, que pode ser configurado como entrada ou saída. Na maioria dos casos, o pino de entrada e saída permite ao microcontrolador comunicar, controlar ou ler informação. Software Informação de que o microcontrolador necessita, para poder funcionar. O software não pode apresentar quaisquer erros se quisermos que o programa e o dispositivo funcionem como deve ser. O software pode ser escrito em diversas linguagens tais como: Basic, C, Pascal ou assembler. Fisicamente é um ficheiro guardado no disco do computador. Hardware Microcontrolador, memória, alimentação, circuitos de sinal e todos os componentes ligados ao microcontrolador. Um outro modo de ver isto (especialmente se não estiver a funcionar) é que hardware é aquilo em que se pode dar um pontapé! Simulador Pacote de software para correr num PC que simula o funcionamento interno do microcontrolador. É um instrumento ideal para verificar as rotinas de software e todas as porções de código que não implicam ligação com o mundo exterior. Existem opções para observar o código quando nos deslocamos no programa para trás e para a frente ou passo-a-passo e para detecção de erros. ICE ICE (In Circuit Emulator) ou emulador interno, é um utensílio bastante útil que se liga entre um PC (e não um microcontrolador) e o dispositivo que estamos a desenvolver. Isto permite, ao software, correr no computador PC, mas tudo se passando como se fosse um microcontrolador real que estivesse inserido no dispositivo. O ICE, possibilita que nos desloquemos através do programa, em tempo real, para observar o que se está a passar dentro do microcontrolador e como este comunica com o mundo exterior. Emulador de EPROM Um Emulador de EPROM, é um dispositivo que não emula o microcontrolador completo (como no caso do ICE), mas sim a sua memória. É mais frequentemente usado nos microcontroladores que possuem memória externa. Usando um emulador de Eprom, nós evitamos estar sempre a escrever e a apagar, a memória EPROM. Assembler Pacote de software que traduz código fonte em código que o microcontrolador pode compreender. Uma parte deste software, destina-se também, à detecção dos erros cometidos, ao escrever o programa. Ficheiro HEX Ficheiro criado pelo tradutor assembler, quando traduz um ficheiro fonte e que está num formato que é entendido pelos microcontroladores. Este ficheiro aparece normalmente sob a forma Nome_ficheiro.HEX, daqui deriva a designação de “ficheiro hex". Ficheiro LIST Trata-se de um ficheiro produzido pelo tradutor assembler, que contém todas as instruções do ficheiro fonte, o código destino e os respectivos endereços e, ainda, os comentários que o programador escreveu. É um ficheiro muito útil para detectar os erros no programa. Este ficheiro tem a extensão LST, daqui provém a sua designação. Ficheiro Fonte (Source File)
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved