Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Apostila de lajes, Notas de estudo de Engenharia Civil

- - - - - - -

Tipologia: Notas de estudo

Antes de 2010

Compartilhado em 23/09/2008

ricardo-trindade-11
ricardo-trindade-11 🇧🇷

5 documentos

Pré-visualização parcial do texto

Baixe Apostila de lajes e outras Notas de estudo em PDF para Engenharia Civil, somente na Docsity! UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro - Nov/2006 1. INTRODUÇÃO 1. DEFINIÇÃO: Elementos planos (placas), geralmente em posição horizontal, que apresentam uma dimensão, a espessura, muito menor em relação às demais. As lajes recebem os carregamentos atuantes e os transferem aos apoios dispostos no contorno, geralmente vigas, e destes para os pilares até as fundações. Nas estruturas usuais, as lajes respondem por aproximadamente 50 % do consumo de concreto. 1.2. Tipos de lajes a. Lajes maciças: De seção homogênea, executadas sobre formas, que as moldam, e escoramentos, que as sustentam até que adquiram resistência própria. Recomendadas para vãos até 6 metros de comprimento. b. Lajes nervuradas: Apresentam nervuras, onde ficam concentradas as armações, entre as quais podem ser colocados materiais inertes (isopor, tijolo, etc.) com função de enchimento, o que simplifica a forma (plana) e deixa a superfície inferior lisa para receber o acabamento. Esse sistema é empregado em grandes vãos, onde é necessário trabalhar com espessuras elevadas a fim de atender as flechas e solicitações. A necessidade de espessuras elevadas inviabiliza o emprego de lajes maciças em razão do consumo de concreto e do peso próprio elevado, o que não acontece nas nervuradas, pois parte do concreto é retirado ou substituído por um material mais leve, colocado entre as nervuras, ficando a armação concentrada em faixas (nervuras) para atender às solicitações. 1 UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro - Nov/2006 c. Lajes lisas (cogumelo): São lajes apoiadas diretamente pelos pilares (sem vigas). Esse tipo de laje apresenta diversas vantagens: facilidade de execução (forma e armação), redução de pé direito, facilita a passagem de tubulações (elétrica, hidráulica, ar condicionado, etc.), flexibiliza o arranjo de alvenarias e/ou divisórias (forro liso), etc. Apesar das inúmeras vantagens, ausência de vigas torna o sistema mais flexível, comprometendo estabilidade horizontal. A possibilidade de ruptura por punção e colapso progressivo deve ser cuidadosamente analisada. d. Lajes pré-moldadas (treliçadas): Trata-se de lajes nervurada com nervuras parcialmente pré-moldadas. A armação fica concentrada nas nervuras. Tem a vantagem da pré-fabricação, reduzindo o uso de formas e escoramentos, com conseqüente redução de custos e aumento de produtividade. 2 UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro - Nov/2006 3.0 AÇÕES A CONSIDERAR As ações (carregamentos) podem classificadas segundo o tempo de atuação nas estruturas, dando origem às ações permanentes e ações variáveis. As ações permanentes atuam durante toda a vida, pode-se citar: peso próprio, revestimentos, paredes, etc. As ações variáveis são constituídas pelas cargas de uso da construção, ou seja, atuam durante certos períodos na estrutura, pode-se citar: móveis, pessoas, veículos, peso da água (reservatórios), etc. A figura mostrada a seguir ilustra as ações usuais nas lajes de construções residenciais. paredes revestimento teto pessoas, móveis, veículos, etc revestimento do piso No processo de cálculo das lajes, as ações devem ser consideradas por m2, algumas são de fato, caso do peso próprio, outras são admitidas assim por simplificação, como o peso de paredes, o qual deve ser distribuído na área da laje. O cálculo computacional por elementos finitos já permite a consideração mais precisa da atuação de ações discretas (paredes) nas lajes. 3.1 COMPOSIÇÃO DO CARREGAMENTO DAS LAJES POR m2 3.1.1 AÇÕES PERMANENTES São constituídas pelo peso próprio do elemento estrutural e pelo peso de todos os elementos construtivos e instalações permanentes. Toda carga é de volume (kN/m3), transformada em peso por m2 (kN/m2) para efeito de cálculo. a. Peso próprio Para determinação do peso próprio (pp) por m2, basta multiplicar o volume da laje em 1 m2, pelo peso específico do concreto armado (γ = 25 kN/m3), assim: pp = 1 m x 1 m x e x 25 = 25. e (kN/m2), com e em metros. 5 UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro - Nov/2006 Para cada “cm” na espessura da laje (0,01 m), o peso próprio aumenta de 0,25 kN (25 kgf). Assim, uma laje com 8 cm de espessura apresenta peso próprio de 2 kN (200 kgf) por m2. Como a espessura ainda não é conhecida nesta fase do cálculo, e o peso próprio é um carregamento a ser considerado, deve-se fazer um pré-dimensionamento das espessuras. A norma brasileira (NBR 6118) não apresenta critérios de pré- dimensionamento, no entanto, para lajes retangulares com bordas apoiadas ou engastadas, a altura útil (d) pode ser estimada por meio da expressão: 100 )1,05,2( *lnd ⋅−= sendo n o número de bordas engastadas e l* o menor valor entre l (menor vão) e 0,7L (maior vão). Ao valor da altura útil deve-se acrescentar o valor correspondente à metade do diâmetro da armação (estimado) e o valor do cobrimento das armaduras, como ilustrado na figura abaixo. Assim, = d +Ø/2 + c d Ø/2 c e Para efeito de pré-dimensionamento pode-se admitir um diâmetro de 0,5 cm (Ø = 5.0 mm). O valor do cobrimento (c) é estabelecido na NBR 6118 de acordo com a classe de agressividade ambiental (CAA) em que a estrutura será construída, conforme as Tabelas 6.1 e 7.2 da norma, mostradas a seguir. 6 UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro - Nov/2006 Permite ainda a norma que os cobrimentos acima sejam reduzidos de 5 mm, quando houver um controle rigoroso de execução, o que deve ser explicitado nos desenhos do projeto. De acordo a NBR 6118, lajes executadas em Belém, ambiente urbano, classe II, devem ter cobrimento mínimo na face inferior e superior de 25 mm e 15 mm, respectivamente, enquanto aquelas executadas em Salinópolis, ambiente marinho, classe III, devem ser executadas com cobrimento de 35 mm e 15 mm. A NBR 6118 ainda prescreve que devem ser respeitados os seguintes limites mínimos para a espessura de lajes maciças: • 5 cm para lajes de cobertura não em balanço; • 7 cm para lajes de piso ou de cobertura em balanço; • 10 cm para lajes que suportem veículos de peso total menor ou igual a 30 kN; • 12 cm para lajes que suportem veículos de peso total maior que 30 kN; • 16 cm para lajes lisas e 14 cm para lajes-cogumelo. Como exemplo de pré-dimensionamento, seja a laje de piso indicada na figura a seguir, a ser executada em ambiente classe, armada com ferros de diâmetro 6 mm. 100 )1,05,2( *lnd ⋅−= , sendo n = 1 e l* o menor valor entre l = 350 e 0,7 L = 280 cm, ou seja, l* = 280 cm, logo, cmd 72,6 100 280)11,05,2( = ⋅⋅− = L = 400 l= 3 50 l= 3 50 7 UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro - Nov/2006 d.1 Peso das paredes nas lajes armadas em apenas uma direção Há duas situações quanto à distribuição do peso das paredes, visto que essas lajes são admitidas como faixas sucessivas de 1 m de largura, como vigas, segundo o menor vão. • Parede paralela à menor direção: a peso da parede é distribuído apenas em um trecho correspondente a 2/3 do menor vão, como indicado na figura, ficando a laje com carregamentos diferentes. Nos trechos “a” e “c”: lb paredetotalPesopalv ⋅ = No trecho “b”: , sendo b = l⋅ 3 2 l L • Parede paralela à maior dimensão: A parede é considerada como uma carga concentrada na laje. No trecho “a””: No trecho “b”: Ppar = 1 ml x altura parede x peso 1 m2 parede Nos dois casos acima, a carga da parede solicita trechos diferentes da laje (a, b e c), resultando em momentos e, provavelmente, armaduras diferentes na mesma laje. De a b = c L pp+rev+sc l pp = peso próprio rev = revestimento sc = carga acidental pp+ l⋅3 2 rev+sc+palv l pp = peso próprio rev = revestimento sc = carga acidental palv = peso parede l L a b d1 d2 L pp+rev+sc l pp = peso próprio rev = revestimento sc = carga acidental pp+rev+sc l d1 d2 Ppar pp = peso próprio rev = revestimento sc = carga acidental Ppar = peso parede 10 UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro - Nov/2006 modo a simplificar o detalhamento e evitar possíveis erros de execução, costuma-se adotar a maior armação em toda extensão da laje. Nos balanços (sacadas), o peso do guarda-corpo deve ser considerada como uma carga concentrada, aplicada na extremidade do balanço. 3.1.2 AÇÕES VARIÁVEIS São aquelas que atuam na estrutura em função de seu uso, tais como: pessoas, móveis, veículos, etc. O termo variável refere-se ao tempo de permanência da carga na estrutura. Os valores mínimos das cargas variáveis dependem da finalidade da edificação e estão especificados na NBR 6120. São freqüentes os valores: • 1,5 kN/m2 : edifícios residenciais (salas, dormitórios, cozinha e banheiros); • 2 kN/m2 : escritórios • 0,5 kN/m2 : forro / terraço sem acesso ao público; • 3 kN/m2 : garagem / estacionamento para veículos de passageiros com carga máxima de 25 kN por veículo; A NBR 6120 ainda exige que deve-se considerar a atuação de uma carga horizontal de 0,8 kN e outra vertical de 2 kN, por metro linear, ao longo de parapeitos e balcões, como ilustrado na figura a segui. 0,8 kN 2 kN parapeito (guarda-corpo) Cabe citar a situação de estruturas com cargas variáveis (sobrecargas) elevadas, caso de depósitos, supermercados, etc., onde deve-se analisar os resultados da aplicação da carga variável em lajes distintas de modo a se obter os maiores esforços, visto que a aplicação localizada de valores elevados de carga pode alterar a condição de engastamento da laje, ou seja, pode resultar na rotação (apoio simples) na borda da laje, admitida inicialmente engastada. carga variável elevada 11 UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro - Nov/2006 4. ESFORÇOS SOLICITANTES O dimensionamento das lajes é realizado a partir dos momentos fletores, das forças cortantes e dos momentos de torção. As lajes são consideradas como faixas sucessivas de 1 m de largura, dispostas em uma ou duas direções, onde atuam os esforços solicitantes. O valor determinado para a faixa de laje é considerado o mesmo em toda sua extensão. Os esforços dependem do carregamento, das vinculações e dos vãos da laje. 4.1 Momentos fletores 4.1.1 Nas lajes armadas em uma direção ( L / l >2 ) a. Apoiadas nos quatro lados ( L / l >2 ) O cálculo é análogo ao de uma viga de base igual a 1 m e altura correspondente à espessura da laje. Os seguintes casos podem ser encontrados: b. Em balanço 100 l L 8 2lp ⋅ p l p 8 2pl − l p 12 2pl − 24 2pl A laje fica engastada em apenas um lado, considera-se como uma viga em balanço p(g+q) l P(peso gc +2 kN) 0,8.h 0,8 kN 2 kN h )8,0 2 ( 2 hlPlpM f ⋅+⋅+ ⋅ −≅ )( PlpV +⋅−≅ 12 UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro - Nov/2006 3. Com a definição do tipo de laje e do valor de λ , obtém-se na tabela de Marcus os coeficientes m e n para cálculo dos momentos positivos e negativos, respectivamente; 4. Os momentos são então obtidos pelas expressões: Momentos positivos Momentos negativos Diagrama compatibilizado L1 L2 XL1 XL2 } Xc XL1 Xc XL2 1LM∆ 2L M∆ x x x m pl M 2 = x x x n pl X 2 −= y x y m pl M 2 = y x y n pl X 2 −= ly l x Xy X x M x My l x X x M x Observar que o numerador das expressões é sempre o mesmo, , nas duas direções. 2 xpl 4.1.3 Compatibilização dos momentos O cálculo dos momentos fletores indicado nos itens anteriores é realizado como lajes isoladas. No trabalho conjunto, as lajes admitidas contínuas apresentam, normalmente, sobre um mesmo apoio, momentos de engastamento diferentes face ao cálculo isolado. Dessa forma, entre lajes contínuas, o momento negativo deve ter valor único, o que requer a compatibilização (uniformização) dos momentos das lajes engastadas. O momento compatibilizado pode ser obtido por: ⎪⎩ ⎪ ⎨ ⎧ + ⋅ ≥ 2 (8,0 21 21 LL LL c XX XeXentremaiordo X ) Como conseqüência da compatibilização, convém corrigir os momentos positivos, aumentando-o ou reduzindo-o, conforme for o caso, de um valor correspondente a metade da diferença entre o momento compatibilizado, Xc, e o momento negativo da laje calculada isoladamente, XL1 ou XL2, ou seja, ∆ML1=(XL1 – Xc)/2 para L1 e ∆ML2=(Xc – XL2)/2 para L2. 15 UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro - Nov/2006 Coeficientes para cálculo dos momentos pelo Processo de Marcus 16 UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro - Nov/2006 5. DIMENSIONAMENTO À FLEXÃO Calculados os momentos fletores, pode-se realizar o dimensionamento das armaduras de flexão. O dimensionamento é realizado admitindo-se as faixas de laje como vigas de base 1 m e altura h igual à espessura da laje. Em geral, o dimensionamento conduz a seções subarmadas com armadura simples. A armadura dupla deve ser evitada em virtude da altura reduzida o que dificulta a execução. Para o cálculo das armaduras, além da altura e momento fletor, é preciso definir a altura útil (d = h – d’), a resistência característica à compressão do concreto (fck) e o aço a ser empregado (CA 50 ou CA 60). As armaduras podem ser obtidas por: )/( 2 mcm fdk MA ydz Sd s = sendo: kSd MM ⋅= 4,1 , momento solicitante de cálculo em kgf.m; d , a altura útil em metros; fyd , valor de cálculo da resistência ao escoamento em kgf / cm2; zk , coeficiente obtido na Tabela 5.1 a partir do coeficiente obtido por: mdk cd Sd md fd M k 2= onde cdf é o valor de cálculo da resistência à compressão do concreto em kgf / cm 2; d , a altura útil em centímetros e em kgf.m. SdM Com o objetivo de melhorar a dutilidade nas regiões de apoio ou ligações com outros elementos estruturais, a NBR 6118 exige que se observe os seguintes limites: 5,0≤= d xkx para concretos com 35≤ckf MPa 4,0≤= d xk x para concretos com MPa 35>ckf 17 UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro - Nov/2006 Após dimensionamento à flexão, a escolha das armaduras (bitola e espaçamento) deve atender as prescrições da NBR 6118/2003 relacionadas a seguir: a. Armadura mínima: Destinada a melhorar o desempenho e dutilidade à flexão, assim como controlar a fissuração, a armadura mínima em lajes deve ser obtida por hbA wmíns ⋅⋅= min, ρ (cm2) sendo , h em cm e cmbw 100= mínρ obtido na Tabela abaixo Tabela 5.2 – Taxa de armadura mínima em lajes 20 25 30 35 40 45 50 Armaduras negativas Armadura positiva (principal) de lajes armadas em uma direção Armadura positiva de lajes armadas em duas direção 0,1 0,1 0,116 0,135 0,154 0,174 0,193 f ck (MPa)Armaduras ρ mín 0,15 0,15 0,173 0,201 0,23 0,259 0,288 A armadura secundaria (distribuição) de lajes, colocada na direção paralela ao maior vão, deve ser obtida por ⎪ ⎩ ⎪ ⎨ ⎧ ⋅ ≥ míns prins dists A mcm A A , 2 , , 5,0 /9,0 5/ b. Bitola máxima ( máxφ ) 8 h máx ≤φ , h é a espessura da laje c. Espaçamento máximo das barras ( ) s Na região de maiores momentos fletores, a armadura principal deve apresentar espaçamento máximo de 2h ou 20 cm, ou seja, . ⎩ ⎨ ⎧ ≤ cm h s 20 2 A armadura secundária deve apresentar espaçamento de no máximo 33 cm, o que corresponde a aproximadamente 3 barras por cada metro da laje na direção secundária. 20 UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro - Nov/2006 6. DETALHAMENTO DAS ARMADURAS DE LAJES O detalhamento das armaduras das lajes é realizado em planta, utilizando como base a planta de formas da estrutura do pavimento. Na planta de armadura de lajes devem ser desenhadas apenas as barras representativas da armadura de cada laje nas duas direções, com indicação do número de barras destinadas àquela laje, diâmetro, espaçamento entre barras e comprimento unitário. O desenho deve indicar as armaduras positivas (junto à face inferior) e negativas (junto à face superior), no entanto, quando houver superposição de armaduras que dificulte a interpretação deve-se realizar o detalhamento dessas armaduras em plantas diferentes. Costuma-se representar as barras da armadura positiva com linhas cheias e as da negativa com linhas tracejadas de modo a facilitar a visualização do detalhamento. Por último, na planta de detalhamento das armaduras devem constar: a resistência característica do concreto, fck, o tipo de aço (CA 60 e/ou CA 50), os quadros com discriminação das barras e resumo do aço (quantitativos), e o cobrimento a ser adotado na execução do projeto. 6.1 Armadura inferior (positiva) Deve ficar junto à face inferior da laje com a finalidade de atender os momentos fletores positivos. As armaduras geralmente se estendem de apoio a apoio, penetrando no mínimo 10Ø (10 diâmetros da barra). Na prática a armadura se estende até próximo à face externa da viga de apoio da laje, respeitando-se o cobrimento mínimo normativo. A Figura 6.1 mostra o detalhamento típico de armaduras positivas em lajes. A bitola e espaçamento são obtidos no dimensionamento. A quantidade é obtida dividindo-se o vão livre (interno), na direção transversal da armadura, pelo espaçamento, subtraindo-se uma unidade. O comprimento é obtido pela soma do vão livre, na direção da armadura, com a largura dos apoios, subtraindo-se o cobrimento normativo nas duas extremidades. 32 Ø6.3 c14 - 405 46 0 380 15 15 15 23 Ø 5. 0 c1 6 -4 85 Quantidade Diâmetro Espaçamento Comprimento vão livre 46 0 15 23 Ø 5. 0 c1 6 -4 85 21 Figura 6.1 – Armadura positiva UFPa – ESTRUTURAS DE CONCRETO II – Prof Ronaldson Carneiro - Nov/2006 Alguma economia pode ser obtida variando-se alternadamente o comprimento das barras, em decorrência da redução dos momentos fletores na região próxima dos apoios, ou seja, fora da região dos maiores momentos. O comprimento das barras, denominadas de ferros contra-fiados, depende da vinculação da laje. Deve-se atentar para o espaçamento máximo nessa região em que as barras ficam com o dobro do valor na região dos maiores momentos, em face do valor máximo de 33 cm estabelecido na NBR 6118. Assim, o detalhamento com ferros contra-fiados só pode ser realizado quando o espaçamento entre barras, na região dos maiores momentos, for de até 16,5 cm. A Figura 6.2 exemplifica o detalhamento com ferros contra-fiados. 32 Ø6.3 c14 - 345 46 0 380 15 15 15 15 23 Ø 5. 0 c1 6 -4 15 Quantidade Diâmetro Espaçamento Comprimento vão livre COMPRIMENTO DOS FERROS CONTRA-FIADOS ~ 0,85 . (vão livre + largura apoios) ~ 0,8 . (vão livre + largura apoios) ~ 0,7 . (vão livre + largura apoios) VINCULAÇÃO DA LAJE 46 0 15 15 23 Ø 5. 0 c1 6 -4 15 Figura 6.2 – Detalhamento da armadura positiva com ferros contra-fiados 6.2 Armadura superior (negativa) 6.2.1 Armadura negativa entre lajes totalmente apoiadas (nos quatro lados) Deve ficar junto à face superior da laje com o objetivo de atender os momentos negativos. Quando não se determinar o diagrama exato de momentos negativos, as barras da armadura principal sobre os apoios deverão se estender, para cada lado, de um valor correspondente a 1/4 do maior entre os menores vãos das lajes contíguas, como exemplifica a Figura 6.3. A bitola e espaçamento são determinados pelo dimensionamento. A quantidade é determinada da mesma forma citada anteriormente e o comprimento total corresponde à soma do comprimento reto com os dos ganchos nas extremidades. De modo a garantir o posicionamento das barras, devem ser colocadas barras complementares na direção transversal de modo a proporcionar a sustentação desejada. Convém ainda empregar dispositivos de apoio tais como caranguejos ou blocos de argamassa. 22
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved