Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Toxicologia 2, Notas de estudo de Farmácia

Toxicologia

Tipologia: Notas de estudo

2010
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 09/11/2010

andre-tomaz-terra-junior
andre-tomaz-terra-junior 🇧🇷

4.5

(34)

74 documentos

Pré-visualização parcial do texto

Baixe Toxicologia 2 e outras Notas de estudo em PDF para Farmácia, somente na Docsity! APOSTILA DE TOXICOLOGIA 1 Toxicologia Este trabalho foi preparado com a finalidade de oferecer conhecimentos a profissionais sem um treinamento específico em toxicologia industrial, mas que podem ser chamados para descobrir e interpretar dados que são na sua maioria de natureza médica. Acreditamos que, com a devida interpretação das informações aqui contidas, o profissional da área de segurança, medicina e higiene do trabalho terá um acréscimo de idéias a respeito do vasto campo que é a Toxicologia Industrial. João A. Munhoz munhoz@freenet.de APOSTILA DE TOXICOLOGIA 2 Definição de toxicidade Toxicidade é a característica de uma molécula química ou composto em produzir uma doença, uma vez que alcança um ponto suscetível dentro ou na superfície do corpo. Perigo toxicológico é a probabilidade da doença poder ser causada através da maneira pela qual a substância esteja sendo utilizada. Termos relacionados com a Toxicidade: Aguda: este termo será empregado no senso médico para significar “de curta duração”. Quando aplicado para materiais que podem ser inalados ou absorvidos através da pele, será referido como uma simples exposição de duração medida em segundos, minutos ou horas. Quando aplicado a materiais que são ingeridos, será referido comumente como uma pequena quantidade ou dose. Crônica: este termo será usado em contraste com aguda, e significa de longa duração. Quando aplicado a materiais que podem ser inalados ou absorvidos através da pele, será referido como períodos prolongados ou repetitivos de exposição de duração medida em dias, meses ou anos. Quando aplicado a materiais que são ingeridos, será referido como doses repetitivas com períodos de dias, meses ou anos. O termo “crônico” não se refere ao grau (mais severo) dos sintomas, mas se importará com a implicação de exposições ou doses que podem ser relativamente perigosas, a não ser quando estendidas ou repetidas após longos períodos de tempo (dias, meses ou anos). Nesta apostila o termo “crônico” inclui exposições que podem também ser chamadas de “subagudas”, como por exemplo algum ponto entre aguda e crônica. Local: este termo se refere ao ponto de ação de um agente e significa que a ação ocorre no ponto ou área de contato. O ponto pode ser pele, membranas mucosas, membranas dos olhos, nariz, boca, traquéia, ou qualquer parte ao longo dos sistemas respiratório ou gastrintestinal. A absorção não ocorre necessariamente. Sistêmico: este termo se refere a um ponto de ação diferente do ponto de contato e pressupõe que ocorreu absorção. É possível, entretanto, que agentes tóxicos possam ser absorvidos através de canal (pele, pulmões ou canal gastrintestinal) e produzirem manifestações posteriores em um daqueles canais que não são um resultado do contato direto original. Desta maneira é possível para alguns agentes produzir efeitos perigosos em um simples órgão ou tecido como o resultado de ambas as ações “local e sistêmica”. Absorção: diz-se que um material foi absorvido somente quando tenha alcançado entrada no fluxo sangüíneo e conseqüentemente poder ser carregado para todas as partes do corpo. A absorção necessita que a substância passe através da pele, membrana mucosa, ou através dos alvéolos pulmonares (sáculos de ar dos pulmões). Também pode ser se dar através de uma agulha (subcutânea, intravenosa, etc...), mas esta via não é de muita importância em Higiene Industrial. Classificações de toxicidade APOSTILA DE TOXICOLOGIA 5 Definição de Toxicologia Em termos simples, toxicologia pode ser definida como a ciência da ação de venenos em organismos vivos. Toxicologia Industrial é relacionada com o organismo humano e conseqüentemente está coligada ao campo da medicina. Desde que a medicina não pode ser considerada uma ciência exata como a química, física ou matemática, o fenômeno da toxicologia não pode sempre ser previsto com precisão ou explicado com base nas leis da física ou química. Este fato que não pode ser previsto, freqüentemente reduz as conclusões e decisões para opinião melhor do fato. Genericamente falando, Toxicologia Industrial é relacionada com os efeitos de substâncias que penetram em alguma parte do corpo humano devido à atividade laboral das pessoas dentro de indústrias. Definição de veneno O veneno pode ser considerado como substância que causa danos para os tecidos vivos, quando aplicados em doses relativamente pequenas. Não é sempre fácil fazer uma distinção entre substâncias venenosas e não venenosas. A consideração mais importante quando definimos o termo veneno, é relacionar a quantidade ou dosagem a partir da qual o produto se torna perigoso. Dosagem efetiva Certas substâncias podem causar danos quando aplicadas diretamente sobre a pele. Entre os fatores que são relacionados com dosagem efetiva, os mais importantes são: 1. Quantidade ou concentração do material. 2. Duração da exposição. 3. Estado de dispersão (tamanho da partícula ou estado físico, por exemplo: pós, fumos, gases, etc...). 4. Afinidade com o tecido do corpo humano. 5. Solubilidade nos fluidos dos tecidos humanos. 6. Sensibilidade dos órgãos ou tecidos do corpo humano. Obviamente existem possibilidades de grandes variações em qualquer um destes fatores. APOSTILA DE TOXICOLOGIA 6 Métodos de expressão de Dosagem Efetiva 1- Threshold Limit Values -TLV (Valor do Limite de Tolerância) -formalmente é a concentração máxima permitida. Nos Estados Unidos, o Valor Limite de Tolerância (TL ou TLV) definido pela Conferência Americana de Higienistas Industriais Governamentais tem recebido uma aceitação muito grande. De acordo com a Conferência (ACGIH) estes valores representam condições sob as quais é acreditado que aproximadamente todos os trabalhadores podem estar expostos, dia após dia, sem efeitos adversos. Muitos dos Valores Limite de Tolerância se referem a concentrações de média ponderada no tempo para um dia normal de trabalho, mas alguns são níveis que não devem ser excedidos em nenhum momento. Próximos dos valores relatados para os TLV’s estão os chamados “padrões de concentrações aceitáveis” promulgados pela Associação de Padrões Americanos (ASA). De acordo com a ASA, estes padrões são designados para prevenir: • mudanças indesejáveis na estrutura ou bioquímica do corpo; • reações funcionais indesejáveis, que podem não ter efeitos perceptíveis na saúde; • irritações ou outros efeitos sensores adversos. Para gases e vapores, o valor Limite de Tolerância é comumente expresso em partes por milhão (ppm), que é partes de gás ou vapor por milhão de partes de ar no ambiente. Para partículas aerodispersóides, fumos e névoas e para algumas poeiras, o Valor Limite é comumente expresso em miligramas por metro cúbico de ar (mg/m3) Para algumas poeiras, particularmente aquelas contendo sílica, o valor Limite é comumente expresso em milhões de partículas por metro cúbico de ar. A aplicação literal do Valor Limite de Tolerância é perigosa pelas seguintes razões: • a grande maioria de Valores Limites publicados são baseados tanto em especulação, opinião ou experiências limitadas em ratos, camundongos, porcos da Índia ou outros animais de laboratório. Em poucos casos os valores foram estabelecidos firmemente com base a exposição de seres humanos, correlacionados com observações ambientais adequadas. • concentrações de materiais tóxicos ou perigosos, em qualquer ambiente de trabalho, raramente permanecem constantes durante um dia de trabalho. A ocorrência de “ondas” é bem conhecida. • exposições industriais freqüentemente envolvem misturas em vez de apenas um composto. Muito pouco se sabe sobre os efeitos de misturas. • indivíduos variam tremendamente na sua sensibilidade ou susceptibilidade para substâncias tóxicas. Os fatores que controlam esta variação não são bem entendidos. Não deve ser considerado que condições seguras para uma pessoa serão condições seguras para todos indivíduos. • existe talvez uma tendência em considerar uma substância meia tóxica em relação a outra se o Valor Limite for duas vezes maior. • um simples valor do Valor Limite de Tolerância é comumente mencionado para substâncias que ocorrem na forma de sais ou compostos de diferentes solubilidades ou de diferentes estados físicos (por exemplo: chumbo, mercúrio). • o Valor Limite pode ser escrito em instrumentos legais (leis e códigos) e desta maneira utilizado para diversos propósitos. APOSTILA DE TOXICOLOGIA 7 Se as limitações acima forem entendidas e aceitas, o Valor Limite publicado pode ser empregado com grandes vantagens práticas. A principal utilização é em conexão com projetos de sistemas de ventilação. Os profissionais de ventilação devem ter uma figura concreta (valor limite de contaminante permitido) para servir como base de desenvolvimento do sistema de ventilação. Não deve ser considerado, entretanto, que o atendimento da concentração abaixo do Valor Limite publicado necessariamente irá prevenir todos os casos de envenenamento ocupacional; nem que concentrações que excedem os limites terão necessariamente como resultados casos de envenenamento. O conceito conhecido como Lei de Haber, que envolve o produto da concentração pelo tempo (C x T = K), expressa um índice do grau do efeito tóxico. Este também pode ser mal-entendido, desde que o relativo efeito de grandes doses em curtos períodos de tempo pode guardar pequena relação com o efeito de pequenas doses durante um longo período de tempo. 2 - Dose Letal Mínima e Teste LD50. Em toxicologia experimental, é comum a prática de determinar a quantidade de veneno por unidade de peso do corpo de um animal experimental, que terá um efeito fatal. (Uma escala comumente usada é de miligrama de veneno por quilograma de peso do corpo). A quantidade por peso do corpo que irá causar, mesmo uma única morte em um grupo de animais é conhecida como a dose letal mínima (MLD). A expressão mais comumente utilizada em experiências de toxicologia industrial é a quantidade que irá matar metade de um grupo de animais. Esta é conhecida como o Teste LD50 (Dose Letal de 50%), que representa 50 % de fatalidade. 3 - Range Finding Test (Teste de Descobrimento de Escala) Este método para determinar e expressar o grau de toxicidade de produtos químicos utilizados na indústria foi desenvolvido primeiramente por H.F. Smyth Jr. e seus colaboradores. Sua maior utilidade é no teste de novos produtos onde não existem dados toxicológicos. A base deste teste é a comparação da potência de um composto desconhecido com a do material mais familiar. Isto é possível desde que haja um número de produtos químicos com dados toxicológicos extensivos razoavelmente já disponíveis. Por esta técnica uma certa quantidade de valiosas informações pode ser obtida num espaço de cerca de três semanas. 4 - Hazard Rating (Razão de Perigo) Este termo é mencionado em livros para indicar quando um material é levemente, moderadamente ou severamente tóxico, ou até mesmo se não é tóxico (U). É obviamente um método simples e grosseiro, mas servirá como um guia direto para o risco envolvendo exposição a vários produtos, até que informações mais recentes e completas estejam à disposição. A Razão do Perigo de produtos químicos industriais é baseada na interpretação de todas as informações disponíveis, particularmente Valor Limite de Tolerância, LD50, Teste de Descobrimento de Escala, bem como, na experiência humana. Toxicologia por analogia Devido à escassez de informações toxicológicas sobre muitos compostos químicos utilizados na industria, existe freqüentemente uma tendência em considerar que compostos que possuem características químicas próximas, terão propriedades tóxicas similares. Se isto pode ser verdade para um número limitado de substâncias, este fato não pode significar uma verdade universal. Como já mencionado, muitos produtos químicos quando absorvidos pelo corpo sofrem uma série de mudanças (processos de desintoxicação) antes de serem excretados. Os produtos intermediários dependerão grandemente da estrutura química do material original, e pequenas diferenças na estrutura podem resultar em produtos intermediários ou finais totalmente diferentes. Este princípio é muito bem ilustrado no caso do benzeno e tolueno; estes produtos são quimicamente muitos próximos, mas os metabolismos são diferentes e o grau de toxicidade é também muito diferente. “Toxicologia por analogia” pode ser muito perigosa e enganosa. Classes de substâncias tóxicas APOSTILA DE TOXICOLOGIA 10 Suscetibilidade Individual O termo "suscetibilidade individual" tem sido usado há muito para expressar o fato bem conhecido que sob condições semelhantes de exposição a substâncias potencialmente perigosas, existe normalmente uma variação acentuada na maneira com que indivíduos vão responder. Alguns podem não mostrar evidências de intoxicação sejam quais forem; outros podem mostrar sinais de envenenamento brando, enquanto outros podem apresentar danos severos ou até mesmo fatais. Comparativamente, pouco é conhecido sobre os fatores que são responsáveis por estas variações. Acredita-se que diferenças na estrutura anatômica do nariz podem estar relacionadas com diferentes graus de eficiência na filtragem de poeiras perigosas no ar inspirado. Infecções prévias nos pulmões, particularmente a tuberculose, são conhecidas como aceleradores da suscetibilidade da silicose. A maioria dos toxicologistas acredita que obesidade é um fator de predisposição importante entre pessoas que estão sujeitas a exposições ocupacionais a solventes orgânicos e produtos relacionados. Acredita-se que idade e sexo também são fatores, bem como doenças anteriores podem ser significativas. Outros fatores possíveis relacionados com a suscetibilidade individual são ainda menos compreendidos que aqueles mencionados. Tem sido sugerido que diferentes razões de velocidade de trabalho, resultando em variações na razão de respiração, no pico da respiração e na razão do pulso podem tomar parte também. A ação dos cílios pulmonares pode ter alguma importância. A permeabilidade dos pulmões pode influenciar a absorção e a eficiência dos rins e podem governar a razão pela qual materiais tóxicos são excretados, mas a natureza subjacente destas variações de possibilidades não é conhecida. Desde que o fígado atua em grande parte na desintoxicação e excreção de substâncias perigosas, o funcionamento subnormal deste órgão pode conduzir a uma maior suscetibilidade. Existe uma considerável literatura propondo mostrar que fatores nutricionais podem ter algo relacionado com suscetibilidade a envenenamento ocupacional. A maioria do material publicado é talvez não científico e inconveniente, mas poucos relatórios sugerem fortemente que realmente existe uma relação entre a natureza da dieta e a suscetibilidade ao envenenamento. Existe ainda, não como evidência substancial, que a adição de concentrados de vitaminas, leite ou comidas especiais tem qualquer valor protetivo, mas quando as dietas são deficientes em algum dos elementos nutricionais essenciais parece que o envenenamento é mais comum de ocorrer. Existe considerável evidência que a ingestão de bebidas alcoólicas vai aumentar significativamente a possibilidade de envenenamento ocupacional, particularmente por solventes orgânicos. Efeitos Crônicos e Agudos A Toxicologia Industrial é geralmente relacionada com os efeitos de exposições de baixo grau (sub-letal) que são contínuas por períodos maiores de meses ou até anos. É verdade que problemas toxicológicos não raramente são apresentados como o resultado de acidentes onde criou-se rapidamente uma exposição volumosa de concentrações opressivas de produtos tóxicos. O envenenamento agudo que resulta pode causar inconsciência, choque ou colapso, inflamação severa dos pulmões ou mesmo morte súbita. O entendimento da natureza da ação do agente opressor pode ser de grande valor no tratamento de envenenamento agudo, mas em alguns casos a única aplicação do conhecimento toxicológico será para estabelecer a causa da morte. A detecção de quantidades de agentes tóxicos na atmosfera e nos fluidos do corpo (sangue e urina) e o conhecimento dos efeitos de exposição para pequenas quantidades de venenos estão entre as principais tarefas do toxicologista industrial. As manifestações de envenenamento crônico são sempre tão sutis que um julgamento mais perspicaz é necessário a fim de detectar e interpretá-las. As mais refinadas técnicas de análise química e de patologia clínica são chamadas para participar, envolvendo estudos do ambiente de trabalho e dos indivíduos expostos. A fim de demonstrar que envenenamento crônico industrial tem ocorrido ou é uma possibilidade, é necessário mostrar que um agente perigoso está presente em concentrações significativas, que o mesmo tem sido absorvido, e que foram produzidos, no sujeito exposto, distúrbios compatíveis com o envenenamento pela substância suspeita. Concentrações significantes são comumente expressas em termos de limite de tolerância. A absorção de substância pode ser provada demonstrando sua presença no sangue ou urina em concentrações acima que as encontradas em pessoas não expostas, ou pela detecção de certos produtos metabólicos nos excrementos. Para provar que distúrbios tenham ocorrido em um sujeito exposto pode ser necessária a aplicação de todos os procedimentos de diagnósticos utilizados na medicina, incluindo: a história médica, exame físico, contagem sangüínea, análise da urina, estudos de raios X, e outras medições. APOSTILA DE TOXICOLOGIA 11 Uma pequena quantidade de produtos químicos largamente utilizados na indústria, notadamente Chumbo e Benzeno, vão produzir mudanças no sangue logo nos primeiros estágios de envenenamento. Outros produtos químicos, particularmente hidrocarbonetos clorados, não dão evidências tão cedo de sua ação. Metais pesados como o Mercúrio e Chumbo produzem seus efeitos crônicos perigosos através do que é conhecido como "ação cumulativa". Isto significa que, através de um período de tempo, o material que é absorvido é somente parcialmente excretado e que suas quantidades aumentam acumulativamente no corpo. Eventualmente a quantidade se torna grande suficiente para causar distúrbios fisiológicos. Compostos voláteis não acumulam no corpo, mas provavelmente produzem seus efeitos tóxicos crônicos, causando uma série de pequenos danos para um ou mais órgãos vitais. Lugar de ação de venenos Já mencionamos que diferentes venenos agem em diferentes partes do corpo. Muitas substâncias podem produzir uma ação local ou direta sobre a pele. Os fumos e poeiras e névoas originados de ácidos fortes, alguns dos gases de guerra e muitos outros produtos químicos têm um efeito direto irritante nos olhos, nariz, peito e vias aéreas superiores. Se eles alcançam os pulmões, podem gerar uma ação inflamatória severa chamada pneumotite química. Estes efeitos locais são da maior importância quando em conexão com envenenamento agudo. Mais importante para o toxicologista industrial são os também chamados efeitos sistêmicos. Efeitos sistêmicos ou indiretos ocorrem quando uma substância tóxica foi absorvida na corrente sangüínea e distribuída através do corpo. Alguns compostos como o Arsênico, quando absorvidos em quantidades tóxicas, podem causar distúrbios em várias partes do corpo: sangue, sistema nervoso, fígado, rins, e pele. O Benzeno, por outro lado, parece afetar apenas um órgão, a medula espinhal formadora de sangue. O Monóxido de Carbono causa asfixia pelo impedimento da função normal da hemoglobina do sangue que é transportar oxigênio dos pulmões para todos os tecidos do corpo. Mesmo que a deficiência de oxigênio ocorra em todas as partes do corpo humano, o tecido cerebral é o mais sensível, conseqüentemente as manifestações mais rápidas são aquelas que causam danos ao cérebro. O entendimento de que órgão ou órgãos podem ser danificados, e a natureza e manifestações dos danos causados pelos vários compostos, está entre as mais importantes funções do toxicologista industrial. A nível celular, agentes tóxicos podem agir na superfície ou no interior da célula, dependendo dos receptores ou locais de ligação. um exemplo clássico é a afinidade química do Arsênio e do Mercúrio com grupos sulfidrila (S- H) em matéria biológica. Absorção e envenenamento Como mencionado anteriormente, com exceção dos irritantes externos, substâncias tóxicas geralmente são absorvidas pelo corpo e distribuídas através da corrente sangüínea para o envenenamento ocorrer. Em outras palavras, envenenamento comumente não ocorre sem absorção. Por outro lado, absorção não resulta necessariamente ou sempre em envenenamento. O corpo humano é provido de um sistema elaborado de mecanismos de proteção e é hábil para tolerar uma presença surpreendente e graus de muitos materiais tóxicos. Alguns materiais estranhos são excretados sem alterações através da urina e das fezes. Gases tóxicos, após absorção, podem ser eliminados através dos pulmões. Alguns compostos químicos sofrem processos do metabolismo e são excretados de uma forma alterada. Alguns destes processos são conhecidos como mecanismos de desintoxicação. Em alguns casos o produto intermediário no processo de desintoxicação pode ser mais tóxico que a substância original, como, por exemplo, Acido Fórmico e Formaldeído a partir do Álcool Metílico. Desde que a absorção necessita preceder o envenenamento, a questão sempre surge onde se deve definir a linha de divisão entre absorção e envenenamento. A resposta para esta questão freqüentemente vincula uma dificuldade considerável. Não há dúvida que quando a absorção alcança um ponto onde causa enfraquecimento da saúde, o envenenamento ocorreu. Saúde enfraquecida manifesta por si só a presença de estrutura alterada, funções alteradas, química alterada, ou uma combinação destes. Estes enfraquecimentos, por sua vez, são resultados de sintomas anormais, físico anormal ou descobrimentos através de testes de laboratórios, ou combinação dos mesmos. APOSTILA DE TOXICOLOGIA 12 Quando a absorção produziu ambos: sintomas anormais e descobrimentos objetivos anormais, não há dúvida que o envenenamento ocorreu. Na opinião de muitos estudiosos, absorção que produz evidência objetiva de estrutura alterada ou função deve também ser chamada envenenamento, mesmo que não haja sintomas subjetivos anormais. Quando sintomas subjetivos constituem a única base para distinção entre absorção e envenenamento, a distinção se torna uma matéria de opinião médica requerendo uma avaliação pessoal. Causa Relacionada ou Causa Possível O toxicologista freqüentemente está envolvido com questões médico-legais, já que causas reais ou suspeitas de doenças ocupacionais, quase sempre, resultam em indenizações para os trabalhadores ou reclamações por negligência. Uma ação legal de sucesso por parte do reclamante ou do defendente dependerá sobremaneira de sua habilidade em demonstrar, comumente através de testemunho médico ou de outro "expert", que a exposição ocupacional prejudicou sua saúde. Uma causa possível é aquela que, imaginariamente, poderia ter produzido o efeito perigoso. Envolve a possibilidade. Causa relacionada existe quando uma causa possível realmente produziu o efeito perigoso. Envolve a probabilidade. Os casos médico-legais são comumente determinados com base na opinião por causa do fato que a medicina não é uma ciência exata. Tem sido dito, e verdadeiramente, que na medicina qualquer coisa pode acontecer. Decisões, então, devem ser feitas com base na explanação mais provável de um conjunto de circunstâncias. A opinião médica, para ser convincente, precisa ser baseada em fatos ou observações, mas o mesmo conjunto de fatos ou observações pode estar sujeito a mais de uma interpretação. Daí a importância da opinião. As leis de indenizações trabalhistas são comumente escritas ou interpretadas de uma forma tal que, nos casos de dúvida (algumas vezes dúvidas moderadas), a decisão é tomada a favor do reclamante. Socialmente isto é provavelmente correto, pelo menos em teoria. Na prática, entretanto, tende-se a atribuir o ônus da prova ao defendente antes que ao reclamante. A causa possível é quase sempre considerada como sinônimo de causa relacionada. Sempre requer sobre o defendente a atenção de provar que a causa possível não era de fato a causa real da doença. Obviamente isto pode se tornar consideravelmente difícil. Não é suficiente para o defendente meramente negar a existência da causa possível. Uma defesa de sucesso necessita de uma outra opinião (diagnóstico) além da que a doença ocupacional irá promover uma explanação mais convincente dos fatos provados. Isto sempre requer o mais alto grau de diagnóstico, bem como o procedimento legal mais astuto. Testando a toxicidade A legislação de vários países designou, para proteger os consumidores de envenenamentos acidentais, prescrever um número de indicações padrões de testes de toxicidade nas etiquetas dos produtos. As indicações freqüentemente mais empregadas são as seguintes: • Dose letal 50 aguda oral. • Toxicidade dérmica aguda. Este teste dá os efeitos da absorção pela pele seguida de simples aplicação. • Irritação aguda ou primária. Isto é relacionado com os efeitos imediatos do produto químico na pele, olhos ou membranas mucosas. • Inalação aguda. • Ingestão ou alimentação sub-aguda e crônica. • Absorção pela pele sub-aguda e crônica. • Inalação sub-aguda e crônica. • Sensibilização da pele. APOSTILA DE TOXICOLOGIA 15 Procedimentos gerais de limpeza, talvez o mais simples de todos os controles de medição, e não menos o mais importante e valoroso. A adoção de padrões de limpeza regulares, particularmente onde o problema é relacionado com poeira, é essencial em qualquer programa de controle. Em adição aos procedimentos específicos enumerados, é sempre importante conduzir estimativas regulares do ambiente de trabalho, através de medições dos contaminantes e verificando a efetividade das ações preventivas. APOSTILA DE TOXICOLOGIA 16 Primeiros socorros Tratamento de emergência em caso de envenenamentos agudos Um envenenamento agudo pode ser o resultado da entrada na corrente sangüínea de grande quantidade ou dose concentradas de um veneno, através de: • respiração (inalação), • ingestão, • absorção pela pele, • injeção (hipodérmica ou intravenosa). É obvio que a rota de entrada influenciará o tipo de tratamento de emergência. Em cada caso de envenenamento agudo, é necessária assistência médica imediata. O nome e telefone direto do médico ou médicos, o hospital mais próximo e o serviço de ambulância devem ser colocados próximos aos telefones de emergência apropriados. Se membros do salvamento das empresas vizinhas, a polícia, corpo de bombeiros e companhias de água e energia elétrica necessitarem atuar na emergência, os telefones também devem ser colocados com os demais telefones do parágrafo acima. Cada estabelecimento industrial, não importa o tamanho, deve ter pelo menos uma pessoa treinada para emergências, durante todo o tempo, que é responsável no caso de uma emergência ocorrer por envenenamento. Este indivíduo deve ser treinado e preparado com os tipos de emergência particular que pode enfrentar. Primeiros socorros inadequados podem ser até mais perigosos do que nenhum socorro. A pronta ação é sempre importante, mas, existem relativamente poucos casos em que um atraso de segundos ou minutos terão um significativo valor no resultado final. Quando possível, uma amostra do veneno suspeito, ou do recipiente de onde o mesmo veio, devem ser preservados para servirem de base para tratamento médico, para a polícia ou para perícias médico-legais. APOSTILA DE TOXICOLOGIA 17 Procedimentos gerais Os procedimentos aqui descritos são genéricos. Para produtos específicos, um procedimento apropriado deve ser previsto, sendo que para tanto podem ser empregados os modelos aqui indicados. Inalação 1 - remova a vítima da área contaminada. A equipe de resgate deverá estar devidamente equipada e protegida com equipamentos de proteção respiratória adequados à situação. 2 - mantenha a vítima quieta e com temperatura morna, não quente. Deitado com as costas no chão é normalmente a melhor posição. 3 - se a respiração parou, execute respiração artificial. 4 - administre Oxigênio se necessário e se estiver disponível. 5 - mantenha as vias respiratórias abertas. Examine a boca verificando se há dentadura ou goma de mascar. Caso haja, retire-as. Ingestão 1 - verifique se o estômago foi esvaziado, provocando vômitos. Isto deve ser feito mesmo que tenham se passado horas após a ingestão do veneno. Exceções: quando foram ingeridos produtos químicos corrosivos tais como ácidos fortes ou alcalinos cáusticos, ou quando a vítima está tendo convulsões ou está inconsciente. 2 - dilua o veneno administrando líquidos com qualquer das seguintes formas: • água potável: 3 a 4 copos • água branda (sabão): 2 a 3 copos • água morna com sal de cozinha: uma colher de mesa para cada copo grande • leite: 3 a 4 copos Se estes fluídos forem vomitados, o que é desejável, as doses devem ser repetidas diversas vezes. 3 - dê à vítima um "antídoto universal". Uma mistura de pó de torrada queimada (carvão), chá forte e leite de magnésia irão absorver e neutralizar muitos venenos. (Um pedaço de torrada queimada e quatro colheres de mesa de leite de magnésia em um copo de chá forte.). Contato com a pele 1 - dilua a substância contaminante fazendo lavagem local com grandes quantidades de água. A melhor maneira é através de chuveiro, mas também pode ser feito com uma mangueira, baldes ou outro método. Se possível, a água deve estar ligeiramente quente. 2 - remova as roupas contaminadas. Se possível, aqueles que estiverem socorrendo a vítima devem proteger sua própria pele com luvas. 3 - queimaduras químicas nos olhos devem ser tratadas com grandes quantidades de água ou com uma solução fraca de bicarbonato de sódio (uma colher de chá para 1 litro de água limpa). Venenos injetados APOSTILA DE TOXICOLOGIA coleta e o tempo da análise. Existem métodos de preservação que podem e devem ser usados quando o atraso não pode ser evitado. Erros técnicos. Existe sempre uma possibilidade, mesmo sob as melhores circunstâncias, e sempre quando a competência do técnico é inquestionável, de acontecer erros técnicos dentro dos procedimentos de laboratórios. Estes fatos podem ser minimizados se duplicarmos as amostras que serão analisadas e se um teste em branco é realizado para averiguar a pureza dos reagentes utilizados. Erros de cálculos. Alguns procedimentos de testes requerem a aplicação de fórmulas matemáticas e de cálculos de resultados. Esta pode ser uma fonte de erros. Mistura de amostras. É raro, mas não é desconhecido em laboratórios de grande volume de análise, de erros de identificação ocorrerem. Isto obviamente poderia resultar em conseqüências graves. Erros de registro. Além dos erros de registro de resultados, que poderiam ser gerados de amostras trocadas, existem outras possibilidades de erros. Erros de grafia (ou digitação) podem ocorrer mesmo quando os resultados dos testes tenham sido finalizados, para uma ficha ou quando o resultado esteja sendo transcrito para um outro documento. Letras ilegíveis podem ser uma fonte de confusão e erros. Erros premeditados. A possibilidade de erros gerados por falta de limpeza e organização, bem como por desonestidade, mesmo raros, não pode ser descartada. O laboratório pode ser um valoroso auxiliar, mas nunca deve ser um substituto de um julgamento médico. Quando os dois apresentarem conflito de opiniões, é sempre necessário verificar a possibilidade de erros. As técnicas de procedimentos de laboratório podem ser encontradas num grande número de livros técnicos. Na discussão a seguir estas técnicas não serão discutidas. Testes comuns em laboratórios e seus significados Daremos uma indicação nesta seção para apresentar, na forma de tabela, alguns dos testes de laboratório mais comumente utilizados, bem como dos valores médios normais. Os testes a serem considerados aqui são aqueles que são realizados em qualquer laboratório clínico e que necessitam de equipamentos e técnicas relativamente simples. Os procedimentos mais complexos e especializados serão resumidos em outra parte. Urina O exame laboratorial da urina é um dos mais simples e ao mesmo tempo um dos mais valiosos testes de diagnóstico que existem. A rotina de análise da urina deve ser incluída como parte dos exames em qualquer caso de suspeita de envenenamento. O teste da urina periódico para mudanças específicas é sempre útil em exames rotineiros para detectar rapidamente a evidência do envenenamento. O teste periódico não necessita sempre abranger a rotina completa da análise da urina. Interpretação do teste de urina. Anormalidades na urina podem ser causadas por doenças nos rins, ou por outras partes do trato urinário: uretra, bexiga, estruturas glandulares acessórias ao trato, etc... . Somente quando os rins estão envolvidos, haverá distúrbios na função. Partículas na urina são geradas somente pelos rins, outros elementos (células sangüíneas, células epiteliais) podem entrar na urina a partir de outras partes do sistema urinário. Distúrbios na função renal podem não estar presentes a não ser que os tecidos renais estejam com extensivos danos. Um número de doenças de origem não ocupacional pode produzir resultados anormais na urina. As exposições ocupacionais que podem produzir mudanças na urina estão listadas na tabela 2. Tabela 1 Valores normais da urina Teste Escala de valor normal Significado 20 APOSTILA DE TOXICOLOGIA 21 1 cor de palha claro a âmbar escuro Gravidade específica baixa comumente associada a cor mais clara; gravidade específica alta com cor escura. 2 turbidez comumente clara, se amostra Turbidez não é necessariamente uma indicação de padrão foi colhida recentemente anormal. 3 acidez pH 4,8 à 7,5 Urina fresca é comumente ligeiramente ácida. Com o tempo, a urina pode se tornar alcalina devido à decomposição com a formação de amônia. 4 gravidade de 1,001 a 1,030 A gravidade específica depende da entrada de fluídos. Em específica certas doenças dos rins a mesma pode ser fixada a 1,010. 5 Açúcar (glu- não aparece Uma refeição com alto índice de carbohidratos pode apresen- cose ou açúcar tar açúcar transitando na urina. Sua presença não significa invertido) necessariamente diabetes. 6 albumina não aparece Albumina na urina comumente denota a presença de (proteína) por métodos comuns: doenças dos rins. Ocasionalmente a albumina aparece 6 a 8 mg / 100ml na urina de pessoas normais após longos períodos de estagnação. 7 partículas 0 a 9.000 em 12 hrs Em rotinas de exames de urina apenas poucas partículas e glóbulos verme- 0 a 1.500.000 em 12 hrs células vermelhas do sangue são esperadas em amostras lhos normais. leocócitos e 32.000 a 4.000.000 em 24 hrs outros 8 cristais traços (qualitativo) Podem aumentar sua concentração em exposição ao 0,001 a 0,010 mg / 100 ml chumbo. (quantitativo) 9 concentração esperado ao redor 1,020 Um método grosseiro mas útil de medir função renal. 10 diluição esperado 1,002 Mesmo caso anterior. 11 excreção de 15 min. 30 a 50% Valores dados são baseados em injeção intravenosa de tinta 30 min. 15 a 25% sulfofenalato fenólico (PSP). Uma baixa excreção 60 min. 10 a 15% pode significar baixa função renal. 120 min. 3 a 10% total de 70 a 80% em 2 horas APOSTILA DE TOXICOLOGIA 22 Tabela 2 Envenenamentos ocupacionais que podem causar anormalidades detectáveis em exames comuns de urina Substância Característica encontrada Significado Ácido oxálico Albumina Ocorre em envenenamento severo Anilina e intermediários de tinta Cor escura e células sangüíneas Sugere presença de câncer na bexiga Arsênio Albumina, células sangüíneas Causado devido danos nos rins Benzeno Células sangüíneas vermelhas Envenenamento severo com sangra- mento no interior do trato urinário Brometo de metila Albumina Danos renais Cádmio Proteínas Devido a danos nos rins Chumbo Aumento de cristais, albumina Questionável Cloreto de metila Albumina Danos renais Clorobenzeno Albumina, células sangüíneas Danos renais vermelhas, cor escura Clorofórmio Registros de danos renais Cobalto Questionável Cresol Albumina, células sangüíneas Devido a irritação renal vermelhas DDT Albumina Degeneração renal Diaminofenil metano Registros de danos renais Dicloroetil éter Danos renais em animais de laboratório Difenilclorados (compostos) Registros de danos renais Dimetil formamida Registros de danos renais Dimetil sulfato Danos renais em animais de laboratório Dioxane Células sangüíneas vermelhas, Rompimento hemorrágico queda da função renal Dissulfeto de carbono Albumina Danos renais Etileno diclorado Danos renais em animais de laboratório Glicóis Células sangüíneas vermelhas, Ocorrido após ingestão queda da função renal Mercúrio Albumina, queda da função renal Devido a danos renais Naftalenos clorados (compostos) Registros de danos renais Nitrobenzeno Albumina, células sangüíneas Irritação renal, cor escura devido a pigmentos variados Tetracloreto de carbono Albumina, partículas, células Devido a danos renais sangüíneas, função reduzida Distúrbios no sangue, devido a envenenamento ocupacional Nesta seção, a atenção será limitada àqueles componentes do sangue incluídos na tabela 3. Os testes envolvidos podem ser, e comumente são, realizados em qualquer laboratório clínico. Alguns materiais tóxicos afetam vários elementos do sangue, enquanto outros mudam em apenas um componente. A tabela 5 representa um resumo das anormalidades hematológicas que podem ser causadas por exposição ocupacional a compostos tóxicos. A interpretação dos testes de laboratório no sangue deve ser governada com base em princípios que são aplicados a todos os testes de laboratório para procedimentos de diagnósticos. Em particular, a importância ou controle de observações deve ser pressionado. Além disso, não existe nada específico sobre exames no sangue que permita conclusão que, se anomalias são encontradas em um trabalhador que tenha sido exposto a um agente hematóxico, a mudança é necessariamente devida ao veneno. Ao contrário, a evidência é somente pressuposta e forma uma parte do quadro total. Desde que exames laboratoriais completos do sangue é algo que consome muito tempo, é sempre impraticável realizar estudos completos num número muito grande de trabalhadores. Como procedimento de rotina, a determinação da hemoglobina e exames de substâncias manchadas do sangue pode ser útil. A combinação destes dois testes irá revelar ou dará uma prova da existência da maioria das anormalidades do sangue. Testes simples ou exames parciais são sempre tudo o que é necessário em exames periódicos para detectar início de APOSTILA DE TOXICOLOGIA Tabela 5 Venenos ocupacionais que podem produzir anormalidades detectáveis pelo estudo do sangue Substância Característica encontrada Comentários Acrilonitrila Anemia, leucocitose Registrado mas não definitivamente estabelecido. Alil Isopropil acetil carbamato Trombopenia Anilina Anemia, glóbulos vermelhos Danos variados em exposições agudas marcados e leucocitose ou crônicas. Antimônio Leucopemia Efeitos podem ser similares ao arsênio. Arsênio Anemia e leucopenia Envenenamento industrial pode ser causado por arsina. Benzeno Diminui todos os elementos Morte pode ser causada por depressão formadores da medula óssea. Chumbo Anemia branda, marcas nos Bem estabelecido. glóbulos vermelhos Cloreto de metila Diminuição dos elementos Experimentos com animais. formadores Cobalto Aumento dos glóbulos vermelhos Experimentado em animais somente. DDT Anemia, leucopenia Raramente ocorre. Dissulfeto de carbono Anemia e leucocitose e diminui Dados conflitantes em literatura médica. os glóbulos brancos Fenil hidrazina Anemia c/ sinais de regeneração Devido a destruição do sangue. Fluoretos Anemia Fumos nitrosos Diminuição dos glóbulos brancos Relatado mas não confirmado. Manganês Leucopenia Questionável. Mercúrio Alta hemoglobina Relatado mas não confirmado Monometil etileno glicol Decréscimo em todos elementos Baseado em observações humanas. formadores e aumento da porcen- tagem de glóbulos brancos imaturos. Nitrobenzeno (nitrofenóis) Redução dos glóbulos vermelhos, Devido destruição do sangue. com sinais de regeneração Óxido de etileno Questionável. Rádio Diminuição de todos elementos Bem estabelecido em humanos. formadores Selênio Anemia Experimentos com animais. Silicato etílico Anemia e leucocitose Somente experiências com animais Tetracloreto de carbono Anemia leucemia Questionável. Tetracloro etano Sinais de destruição do sangue Não completamente estabelecido em humanos. Tálio Aumento de glóbulos brancos e Relatado mas não confirmado. eosinófilos Tolueno Anemia e leucopemia Não tão agressivo como benzeno. Tolueno diamina Anemia Toluidina Anemia Questionável. Tório Diminuição de todos elementos Devido a radioatividade. formadores Tricloro etileno Anemia Relatado mas não confirmado. Trinitrotolueno Anemia, leucopemia Bem estabelecido. Urânio Anemia Devido a radiação. Vanádio Anemia Questionável. Xileno Anemia e leucopemia Questionável. 25 APOSTILA DE TOXICOLOGIA 26 Estudos das funções do fígado Como mencionado anteriormente, distúrbios das funções do fígado, detectáveis em métodos de laboratório, podem não apresentar resultados positivos até que danos de grau substancial tenham sido causados. Isto significa que os testes de laboratório da função hepática são de valores muito limitados para detectar início de envenenamentos e que resultados normais nas funções do fígado não significa necessariamente que o fígado está intacto. Uma variedade de causas pode produzir anormalidades na função do fígado e é sempre difícil determinar o fator desta causa. Estudando a função do fígado é costumeiramente realizada uma série de testes. Várias combinações de resultados positivos e negativos são de grande ajuda para se chegar a uma opinião ou conclusão como a verdade do processo da doença. Alguns dos testes que são freqüentemente utilizados no estudo da função do fígado estão incluídos na tabela 4. Alguns testes mais específicos estão resumidos na tabela 6. A interpretação deve ser dirigida pelos princípios gerais colocados anteriormente. A tabela 7 é uma lista de substâncias comumente utilizadas na indústria que podem produzir doenças e danos ao fígado e conseqüentemente podem, em envenenamento severo, resultar em função anormal do fígado. A lista de substâncias é dada sem comentários posteriores, desde que informações pertinentes disponíveis são algo limitado. Para muitas das substâncias listadas, a evidência é confinada a observações em experimentos laboratoriais com animais. APOSTILA DE TOXICOLOGIA Tabela 6 Testes da função do fígado (outros além dos listados na tabela 4) Teste Valores normais Comentários Teste de bromo Menos que 5% de retenção após 45 min. Doença no tecido do fígado, obstrução sulfonaftalato biliar ou circulatória, que causa grande retenção. Floculação cefálica 0 a 1 + floculação em 48 horas Aumento da floculação vai de encontro com doença do fígado ou tecido do fígado associado a anormalidades das proteínas do soro. Soro biliar Total 0,2 a 1,0 mg% Direto 0,1 a 0,7 mg% Indireto 0,1 a0,3 mg% Turbidez Thymol 0 a 4 Unidades Maclagan Mesmo significado de floculação cefálica Urina urobilinogen 0,5 a 2,0 mg/ 24 horas ou Pode ser anormalidade em obstrução da diluição de 1:4 a 1:30 bílis ou doença no tecido do fígado. Tabela 7 Venenos ocupacionais que podem produzir anormalidades na função do fígado Acrilonitrila Antimonio Arsênio* Berílio Cádmio Dissulfeto de carbono* Tetracloreto de carbono* Difenil clorados* Naftalenos clorados* Clorofórmio Cobalto Cicloparafinas DDT Dióxido de dietileno* Dimetilformiatos Dinitrofenol* Difenóis Clorohidroetileno Dicloreto de etileno Brometo de metila Cloreto de metileno* Nitrobenzeno* Fenol Fenil hidrazina Fósforo* Tetracloroetano Tricloroetileno Trinitrotolueno* * substâncias marcadas com asterisco têm mostrado capacidade de produzir doenças no fígado. 27 APOSTILA DE TOXICOLOGIA Quando se interpretam os resultados das análises de sangue e urina para metais pesados, alguns poucos pontos são particularmente importantes. 1. A presença de metal tóxico indica a absorção mas não necessariamente envenenamento. 2. O metal pode ter ganhado acesso ao corpo a partir de fontes não ocupacionais, bem como de fontes ocupacionais. 3. É importante conhecer a quantidade de concentração do metal tóxico e não apenas se o mesmo está presente ou ausente. 4. Desde que pouco é conhecido sobre correlações entre valores de sangue e urina e de manifestações clínicas, é uma boa prática estudar ambos, urina e sangue, para se obter o maior número de dados possíveis. 5. Não existem valores fixos para quantidades de metais pesados no sangue e na urina, que definitivamente estabelecem um diagnóstico de envenenamento. Os resultados meramente entram num quadro e requerem a interpretação por parte de médico com habilidade em diagnosticar tais casos. Tabela 8 Materiais que se pesquisam em sangue e urina Substância Valores normais Comentários Arsênio Urina 0 a 0,85 mg/litro Medicamentos com arsênio ou uma dieta de peixes podem resultar no apareci- mento de arsênio na urina e sangue. Fluoretos Urina 0,2 a 0,4 mg/litro Fliuoretos contidos em água potável é Sangue 0,01 mg/litro importante. Chumbo Urina 0,01 a 0,08 mg/litro Média 0,03 mg/litro Sangue 0,01 a 0,05 mg/ 100 cc. Média 0,03 mg/100 cc. Mercúrio Urina 0 a 0,020 mg/litro Sangue 0 a 0.005 mg/100 cc. Selênio Urina 0 a 0,10 mg/litro Depende do solo que contém o Selênio. CO 0 a 10% Medido como carboxihemoglobina, é influenciado por cigarro. Testes de função pulmonar A interpretação dos testes da função pulmonar requerem o entendimento de um número de termos que são comumente utilizados. Volumes. Existem quatro volumes primários que não são sobrepostos. 1. Volume do ciclo, é a quantidade de gás inspirado ou expirado durante cada ciclo respiratório. 2. Volume reserva de inspiração, (formalmente é o ar complementar menos o volume do ciclo) é a máxima quantidade de ar que pode ser inspirada a partir da posição de fim de inspiração. 3. Volume reserva de expiração, (formalmente a reserva ou ar suplementar) é o volume máximo de ar que pode ser expirado a partir do nível de fim de expiração. 4. Volume residual, (formalmente a capacidade residual de ar) é o volume de ar que permanece nos pulmões no fim do processo de expiração máxima. Capacidades. Existem quatro capacidades, cada uma delas inclui dois ou mais dos volumes primários. 30 APOSTILA DE TOXICOLOGIA 31 1. Capacidade total do pulmão, (formalmente o volume total do pulmão) é a quantidade de gás contida no pulmão no fim da inspiração máxima. 2. Capacidade vital, é o volume máximo de ar que pode ser expelido dos pulmões com esforço seguindo uma inspiração máxima. 3. Capacidade inspiratória, (formalmente o ar complementar) é o máximo volume de ar que pode ser inspirado a partir do resto de um processo de expiração. 4. Capacidade residual funcional, (formalmente capacidade de equilíbrio, ou capacidade média), é o volume de ar remanescente nos pulmões que sobra do processo de expiração. A posição de fim exalação é utilizada aqui como uma linha de base, pois a mesma varia menos que a posição de fim de inspiração. Espaço morto respiratório. O espaço morto anatômico, é o volume interno das via aéreas superiores (que compreende nariz, boca) além da traquéia, árvore brônquica até os alvéolos pulmonares. É chamado de espaço morto pois não ocorre a mudança de Oxigênio por Dióxido de Carbono neste espaço. O espaço morto fisiológico inclui o espaço morto anatômico e dois volumes adicionais: 1. O volume de ar inspirado que ventila os alvéolos, que não tem fluxo sangüíneo capilar pulmonar e 2. O volume de ar inspirado que ventila alguns alvéolos em excesso do que o requerido para oxigenar o fluxo sangüíneo capilar pulmonar, ao redor dos mesmos. É medido em centímetros cúbicos por quilo de peso do corpo. Freqüência é a razão de respiração. Ventilação alveolar por minuto é igual ao volume do ciclo menos espaço morto vezes a freqüência. Volume minuto é igual ao volume do ciclo vezes a freqüência. “Bloco capilar alveolar” é um decréscimo na capacidade que o Oxigênio tem em difundir o ar dentro do alvéolos para o fluxo sangüíneo capilar dos pulmões. Propriedades mecânicas dos pulmões. Concordância é a medida de distensibilidade dos pulmões e do tórax, o volume muda por unidade de pressão (litros/centímetros de H2O). A resistência é provocada pela resistência ao fluxo de ar pelas vias aéreas superiores, bem como pela resistência dos tecidos e membranas que são deformados no processo. A capacidade máxima de respiração é o maior volume de gás que pode ser respirado em um minuto. A capacidade de oxigenação é a maior quantidade de Oxigênio contida no sangue quando o mesmo está completamente oxigenado. A saturação arterial de oxigênio é a porcentagem entre: volume de oxigênio realmente combinado com a hemoglobina, dividido pela máxima quantidade de oxigênio que é possível combinar com a hemoglobina . Aplicação dos testes de capacidade da função pulmonar. Na medicina ocupacional, a principal aplicação dos testes da função pulmonar é descobrir em estudos individuais quem está sofrendo com doenças fibróticas nos pulmões, devido à inalação de poeiras perigosas. Quando grupos destes testes são aplicados é possível determinar, com uma certa extensão, o grau da perda da função pulmonar. Tentativas de correlacionar os testes APOSTILA DE TOXICOLOGIA 32 de função pulmonar com exames de Raios-X, mas nem sempre os resultados são satisfatórios. Anormalidades no coração ou vasos sangüíneos podem afetar os resultados dos testes de função pulmonar, para um patamar marcado e conseqüentemente estes testes não podem ser aplicados para estimar o grau que a doença atingiu, quando doenças cardiovasculares coexistirem.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved