Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

a maquina newtoniana, Notas de estudo de Ciências da Educação

visão do mundo e o sistema de valores que estão na base de nossa cultura, e que têm de ser cuidadosamente reexaminados, foram formulados em suas linhas essenciais nos séculos XVI e XVII. Entre 1500 e 1700 houve uma mudança drástica na maneira como as pessoas descreviam o mundo e em todo o seu modo de pensar. A nova mentalidade e a nova percepção do cosmo propiciaram à nossa civilização ocidental aqueles aspectos que são característicos da era moderna. Eles tornaram-se a base do paradigma que dom

Tipologia: Notas de estudo

2010

Compartilhado em 27/10/2010

glaucia-carneiro-3
glaucia-carneiro-3 🇧🇷

1 documento

1 / 18

Documentos relacionados


Pré-visualização parcial do texto

Baixe a maquina newtoniana e outras Notas de estudo em PDF para Ciências da Educação, somente na Docsity! A máquina do mundo newtoniana1 A revolução científica começou com Nicolau Copérnico, que se opôs à concepção geocêntrica de Ptolomeu e da Bíblia, que tinha sido aceita como dogma por mais de mil anos. Depois de Copérnico, a Terra deixou de ser o centro do universo para tornar-se meramente um dos muitos planetas que circundam um astro secundário nas fronteiras da galáxia; e ao homem foi A visão do mundo e o sistema de valores que estão na base de nossa cultura, e que têm de ser cuidadosamente reexaminados, foram formulados em suas linhas essenciais nos séculos XVI e XVII. Entre 1500 e 1700 houve uma mudança drástica na maneira como as pessoas descreviam o mundo e em todo o seu modo de pensar. A nova mentalidade e a nova percepção do cosmo propiciaram à nossa civilização ocidental aqueles aspectos que são característicos da era moderna. Eles tornaram-se a base do paradigma que dominou a nossa cultura nos últimos trezentos anos e está agora prestes a mudar. Antes de 1500, a visão do mundo dominante na Europa, assim como na maioria das outras civilizações, era orgânica. As pessoas viviam em comunidades pequenas e coesas, e vivenciavam a natureza em termos de relações orgânicas, caracterizadas pela interdependência dos fenômenos espirituais e materiais e pela subordinação de necessidades individuais às da comunidade. A estrutura científica dessa visão de mundo orgânica assentava em duas autoridades: Arist6teles e a Igreja. No século XIII, Tomás de Aquino combinou o abrangente sistema da natureza de Aristóteles com a teologia e a ética cristãs e, assim fazendo, estabeleceu a estrutura conceitual que permaneceu inconteste durante toda a Idade Média. A natureza da ciência medieval era muito diferente daquela da ciência contemporânea. Baseava-se na razão e na fé, e sua principal finalidade era compreender o significado das coisas e não exercer a predição ou o controle. Os cientistas medievais, investigando os desígnios sub jacentes nos vários fenômenos naturais, consideravam do mais alto significado as questões referentes a Deus, à alma humana e à ética. A perspectiva medieval mudou radicalmente nos séculos XVI e XVII. A noção de um universo orgânico, vivo e espiritual foi substituída pela noção do mundo como se ele fosse uma máquina, e a máquina do mundo converteu-se na metáfora dominante da era moderna. Esse desenvolvimento foi ocasionado por mudanças revolucionárias na física e na astronomia, culminando nas realizações de Copérnico, Galileu e Newton. A ciência do século XVII baseou-se num novo método de investigação, defendido vigorosamente por Francis Bacon, o qual envolvia a descrição matemática da natureza e o método analítico de raciocínio concebido pelo gênio de Descartes. Reconhecendo o papel crucial da ciência na concretização dessas importantes mudanças, os historiadores chamaram os séculos XVI e XVII de a Idade da Revolução Científica. 1 CAPRA, Fritjof. O Ponto de Mutação. São Paulo : Editora Cultrix, 2002. tirada sua orgulhosa posição de figura central da criação de Deus. Copérnico estava plenamente cônscio de que sua teoria ofenderia profundamente a consciência religiosa de seu tempo; ele retardou sua publicação até 1543, ano de sua morte, e, mesmo assim, apresentou a concepção heliocêntrica como mera hipótese. A Copérnico seguiu-se Johannes Kepler, cientista e místico que se empenhava em descobrir a harmonia das esferas, e terminou por formular, através de um trabalho laborioso com tabelas astronômicas, suas célebres leis empíricas do movimento planetário, as quais vieram corroborar o sistema de Copérnico. Mas a verdadeira mudança na opinião científica foi provocada por Galileu Galilei, que já era famoso por ter descoberto as leis da queda dos corpos quando voltou sua atenção para a astronomia. Ao dirigir o recém-inventado telescópio para os céus e aplicar seu extraordinário talento na observação científica dos fenômenos celestes, Galileu fez com que a velha cosmologia fosse superada, sem deixar margem para dúvidas, e estabeleceu a hipótese de Copérnico como teoria científica válida. O papel de Galileu na revolução científica supera largamente suas realizações no campo da astronomia, embora estas sejam mais conhecidas por causa de seu conflito com a Igreja. Galileu foi o primeiro a combinar a experimentação científica com o uso da linguagem matemática para formular as leis da natureza por ele descobertas; é, portanto, considerado o pai da ciência moderna. “A filosofia *“, acreditava ele, “está escrita nesse grande livro que permanece sempre aberto diante de nossos olhos; mas não podemos entendê-la se não aprendermos primeiro a linguagem e os caracteres em que ela foi escrita. Essa linguagem é a matemática, e os caracteres são triângulos, círculos e outras figuras geométricas.” 1 Os dois aspectos pioneiros do trabalho de Galileu — a abordagem empírica e o uso de uma descrição matemática da natureza — tornaram- se as características dominantes da ciência no século XVII e subsistiram como importantes critérios das teorias científicas até hoje. A fim de possibilitar aos cientistas descreverem matemática. mente a natureza, Galileu postulou que eles deveriam restringir-se ao estudo das propriedades essenciais dos corpos materiais — for mas, quantidades e movimento —, as quais podiam ser medidas e qualificadas. Outras propriedades, como som, cor, sabor ou cheiro, eram meramente projeções mentais subjetivas que deveriam ser excluídas do domínio da ciência 2• A estratégia de Galileu de dirigir a atenção do cientista para as propriedades quantificáveis da matéria foi extremamente bem sucedida em toda a ciência moderna, mas também exigiu um pesado ônus, como nos recorda enfaticamente o psiquiatra R. D. Laing: “Perderam-se a visão, o som, o gosto, o tato e o olfato, e com eles foram-se também a sensibilidade estética e ética, os valores, a qualidade, a forma; todos os senti mentos, motivos, intenções, a alma, a consciência, o espírito. A experiência como tal foi expulsa do domínio do discurso científico” . Segundo Laing, nada mudou mais o nosso mundo nos últimos quatrocentos anos do que a obsessão dos cientistas pela medição e pela quantificação. A certeza cartesiana é matemática em sua natureza essencial. Descartes acreditava que a chave para a compreensão do universo era a sua estrutura matemática; para ele, ciência era sinônimo de matemática. Assim, ele escreveu, a respeito das propriedades dos objetos físicos: “Não admito como verdadeiro õ que não possa ser deduzido, com a clareza de uma demonstração matemática, de noções comuns de cuja verdade não podemos duvidar. Como todos os fenômenos da natureza podem ser explicados desse modo, penso que não há necessidade de admitir outros princípios da física, nem que sejam desejáveis” Tal como Galileu, Descartes acreditava que a linguagem da natureza — “esse grande livro que está permanentemente aberto ante nossos olhos” — era matemática, e seu desejo de descrever a natureza em termos matemáticos levou-o à sua mais célebre descoberta. Mediante a aplicação de relações numéricas a figuras geométricas, ele pôde correlacionar álgebra e geometria e, assim fazendo, estabeleceu um novo ramo da matemática, hoje conhecido como geometria analítica. Esta incluiu a representação de curvas por meio de equações algébricas cujas soluções estudou de modo sistemático. O novo método permitiu a Descartes aplicar um tipo muito geral de análise matemática ao estudo de corpos em movimento, de acordo com o seu grandioso plano de redução de todos os fenômenos físicos a relações matemáticas exatas. Assim, ele pôde afirmar, com grande orgulho: “Toda a minha física nada mais é do que geometria” O gênio de Descartes era o de um matemático, e isso também se evidencia em sua filosofia. Para executar seu plano de construção de uma ciência natural completa e exata, ele desenvolveu um novo método de raciocínio que apresentou em seu mais famoso livro, Discurso do método. Embora essa obra tenha se tornado um dos grandes clássicos da filosofia, sua proposição original não era ensinar filosofia, mas sim um método que servisse de introdução à ciência. O método de Descartes tinha por finalidade apontar o caminho para se chegar à verdade científica, como fica evidente no título completo do livro, Discurso do método para bem conduzir a razão e procurar a verdade nas ciências. O ponto fundamental do método de Descartes é a dúvida. Ele duvida de tudo o que pode submeter à dúvida — todo o conhecimento tradicional, as impressões de seus sentidos e até o fato de ter um corpo —, e chega a uma coisa de que não pode duvidar, a existência de si mesmo como pensador. Assim chegou à sua famosa afirmação “Cogito, ergo sum”, “Penso, logo existo”. Daí deduziu Descartes que a essência da natureza humana reside no pensamento, e que todas as coisas que concebemos clara e distintamente são verdadeiras. À tal concepção clara e distinta — “a concepção da mente pura e atenta” 13 — chamou ele “intuição”, afirmando que “não existem outros caminhos ao alcance do homem para o conhecimento certo da verdade, exceto a intuição evidente e a necessária dedução” O conhecimento certo, portanto, é obtido através da intuição e da dedução, e essas são as ferramentas que Descartes usa em sua tentativa de reconstrução do edifício do conhecimento sobre sólidos alicerces. O método de Descartes é analítico. Consiste em decompor pensamentos e problemas em suas partes componentes e em dispô-las em sua ordem lógica. Esse método analítico de raciocínio é provavelmente a maior contribuição de Descartes à ciência. Tornou-se uma característica essencial do moderno pensamento científico e provou ser extremamente útil no desenvolvimento de teorias científicas e na concretização de complexos projetos tecnológicos. Foi o método de Descartes que tornou possível à NASA levar o homem à Lua. Por outro lado, a excessiva ênfase dada ao método cartesiano levou à fragmentação característica do nosso pensamento em geral e das nossas disciplinas acadêmicas, e levou à atitude generalizada de reducionismo na ciência — a crença em que todos os aspectos dos fenômenos complexos podem ser compreendidos se reduzidos às suas partes constituintes. O cogito cartesiano, como passou a ser chamado, fez com que Descartes privilegiasse a mente em relação à matéria e levou-o à conclusão de que as duas eram separadas e fundamentalmente diferentes. Assim, ele afirmou que “não há nada no conceito de corpo que pertença à mente, e nada na idéia de mente que pertença ao corpo” A divisão cartesiana entre matéria e mente teve um efeito profundo sobre o pensamento ocidental. Ela nos ensinou a conhecermos a nós mesmos como egos isolados existentes “dentro” dos nossos corpos; levou-nos a atribuir ao trabalho mental um valor superior ao do trabalho manual; habilitou indústrias gigantescas a venderem produtos — especialmente para as mulheres que nos proporcionem o “corpo ideal”; impediu os médicos de considerarem seriamente a dimensão psicológica das doenças e os psicoterapeutas de lidarem com o corpo de seus pacientes. Nas ciências humanas, a divisão cartesiana redundou em interminável confusão acerca da relação entre mente e cérebro; e, na física, tornou extremamente difícil aos fundadores da teoria quântica interpretar suas observações dos fenômenos atômicos. Segundo Heisenberg, que se debateu com o problema durante muitos anos, “essa divisão penetrou pro fundamente no espírito humano nos três séculos que se seguiram a Descartes, e levará muito tempo para que seja substituída por uma atitude realmente diferente em face do problema da realidade” Descartes baseou toda a sua concepção da natureza nessa divisão fundamental entre dois domínios separados e independentes: o da mente, ou res cogitans, a “coisa pensante”, e o da matéria, ou res extensa, a “coisa extensa”. Mente e matéria eram criações de Deus, que representava o ponto de referência comum a ambas e era a fonte da ordem natural exata e da luz da razão que habilitava a mente humana a reconhecer essa ordem. Para Descartes, a existência de Deus era essencial à sua filosofia científica, mas, em séculos subseqüentes, os cientistas omitiram qualquer referência explícita a Deus e desenvolveram suas teorias de acordo com a divisão cartesiana, as ciências humanas c na re cogitans e as naturais, na re extensa. Para Descartes, o universo material era uma máquina, nada além de uma máquina. Não havia propósito, vida ou espiritualidade na matéria. A natureza funcionava de acordo com leis mecânicas, e tudo no mundo material podia ser explicado em função da organização e do movimento de suas partes. Esse quadro mecânico da natureza tornou-se o paradigma dominante da ciência no período que se seguiu a Descartes. Passou a orientar a observação científica e a formulação de todas as teorias dos fenômenos naturais, até que a física do século XX ocasionou uma mudança radical. Toda a elaboração da ciência mecanicista nos séculos XVII, XVIII e XIX, incluindo a grande síntese de Newton, nada mais foi do que o desenvolvimento da idéia cartesiana. Descartes deu ao pensamento científico sua estrutura geral — a concepção da natureza como uma máquina perfeita, governada por leis matemáticas exatas. A drástica mudança na imagem da natureza, de organismo para máquina, teve um poderoso efeito sobre a atitude das pessoas em relação ao meio ambiente natural. A visão de mundo orgânica da Idade Média implicava um sistema de valores que conduzia ao comportamento ecológico. Nas palavras de Carolyn Merchant: “A imagem da terra como organismo vivo e mãe nutriente serviu como restrição cultural, limitando as ações dos seres humanos. Não se mata facilmente uma mãe, perfurando suas entranhas em busca de ouro ou mutilando seu corpo. (...) Enquanto a terra fosse considerada viva e sensível, seria uma violação do comportamento ético humano levar a efeito atos destrutivos contra ela” 17 Essas restrições culturais desapareceram quando ocorreu a mecanização da ciência. A concepção cartesiana do universo como sis tema mecânico forneceu uma sanção “científica” para a manipulação e a exploração da natureza que se tornaram típicas da cultura ocidental. De fato, o próprio Descartes compartilhava do ponto de vista de Bacon, de que o objetivo da ciência é o domínio e controle da natureza, afirmando que o conhecimento científico podia ser usado para “nos tornarmos os senhores e dominadores da natureza” is Em sua tentativa de construir uma ciência natural completa, Descartes estendeu sua concepção mecanicista da matéria aos organismos vivos. Plantas e animais passaram a ser considerados simples máquinas; os seres humanos eram habitados por uma alma racional que estava ligada ao corpo através da glândula pineal, no centro do cérebro. No que dizia respeito ao corpo humano, era in distinguível de um animal-máquina. Descartes explicou em detalhe como os movimentos e as várias funções biológicas do corpo podiam ser reduzidos a operações mecânicas, a fim de mostrar que os organismos vivos nada mais eram do que automata. Ao fazer isso, ele foi profundamente influenciado pela preocupação do barroco seiscentista com as máquinas engenhosas, “como que dotadas de vida própria”, que deliciavam as pessoas com a magia de seus movimentos aparentemente espontâneos. Como a maioria de seus contemporâneos, Descartes estava fascinado por esses autômatos, e até construiu alguns. Era inevitável que acabasse por comparar o funcionamento deles com o de organismos vivos. “Vemos relógios, fontes artificiais, moinhos e outras máquinas semelhantes que, embora meramente feitas pelo homem, têm, não Antes de Newton, duas tendências opostas orientavam a ciência seiscentista: o método empírico, indutivo, representado por Bacon, e o método racional, dedutivo, representado por Descartes. Newton, em seus Principia, introduziu a combinação apropriada de ambos os métodos, sublinhando que tanto os experimentos sem interpretação sistemática quanto a dedução a partir de princípios básicos sem evidência experimental não conduziriam a uma teoria confiável. Ultrapassando Bacon em sua experimentação sistemática e Descartes em sua análise matemática, Newton unificou as duas tendências e desenvolveu a metodologia em que a ciência natural passou a basear-se desde então. Isaac Newton era uma personalidade muito mais complexa do que se poderá deduzir da leitura de seus escritos científicos. Notabilizou-se não só como cientista e matemático, mas também, em várias fases de sua vida, como jurista, historiador e teólogo, e estava profundamente envolvido em pesquisas sobre o oculto e o conheci mento esotérico. Via o mundo como um enigma e acreditava que as chaves para sua compreensão podiam ser encontradas não só através dos experimentos científicos como também das revelações críticas das tradições esotéricas. Newton foi tentado a pensar, como Descartes, que sua mente poderosa seria capaz de desvendar os segredos do universo, e decidiu servir-se dela, com igual intensidade, no estudo da ciência natural tanto quanto no da ciência esotérica. Enquanto trabalhava, no Trinity College, Cambridge, nos Principia, acumulou, ao longo de todos esses anos, volumosas notas sobre alquimia, textos apocalípticos, teorias teológicas não-ortodoxas e várias matérias ligadas ao ocultismo. A maioria de seus escritos esotéricos nunca foi publicada, mas o que deles se conhece indica que Newton, o grande gênio da revolução científica, foi também o “último dos mágicos” O palco do universo newtoniano, no qual todos os fenômenos físicos aconteciam, era o espaço tridimensional da geometria euclidiana clássica. Era um espaço absoluto, um recipiente vazio, independente dos fenômenos físicos que nele ocorriam. Nas próprias palavras de Newton, “o espaço absoluto, em sua própria natureza, sem levar em conta qualquer coisa que lhe seja externa, permanece sempre inalterado e imóvel” 25• Todas as mudanças no mundo físico eram descritas em função de uma dimensão à parte, o tempo, também absoluto, sem ligação alguma com o mundo material, e que fluía de maneira uniforme do passado para o futuro através do presente. Escreveu Newton: “O tempo absoluto, verdadeiro e ma temático, de si mesmo e por sua própria natureza, flui uniforme- mente, sem depender de qualquer coisa externa” Os elementos do mundo newtoniano que se movimentavam nesse espaço e nesse tempo absolutos eram partículas materiais, os objetos pequenos, sólidos e indestrutíveis de que toda matéria era feita. O modelo newtoniano de matéria era atomístico, mas diferia da moderna noção de átomos pelo fato de as partículas newtonianas serem todas da mesma substância material. Newton presumia que a matéria era homogênea; explicava a diferença entre um tipo e outro de matéria não em termos de átomos de diferentes pesos ou densidades, e sim de uma aglomeração mais ou menos densa e compacta de átomos. Os componentes básicos da matéria podiam ser de diferentes dimensões, mas consistiam na mesma “substância”, e o total de substância material num objeto era dado por sua massa. O movimento das partículas era causado pela força da gravidade, a qual, na visão de Newton, atuava instantaneamente à distância. As partículas materiais e as forças entre elas eram de uma natureza fundamentalmente diferente, sendo a constituição interna das partículas independente de sua interação mútua. Newton considerava que tanto as partículas quanto a força da gravidade eram criadas por Deus e, por conseguinte, não estavam sujeitas a uma análise ulterior. Em sua Óptica, Newton explicou claramente como imaginava a criação do mundo material por Deus: “Parece-me provável que Deus, no começo, formou a matéria em partículas sólidas, compactas, duras, impenetráveis e móveis, de tais dimensões e configurações, e com outras propriedades tais, e em tais proporções com o espaço, que sejam as mais compatíveis com a finalidade para que Ele as formou; e que essas partículas primitivas, sendo sólidas, são incomparavelmente mais duras do que quaisquer corpos porosos compostos por elas; realmente tão duras que nunca se desgastam nem se fragmentam, e não existe nenhuma força comum que seja capaz de dividir o que o próprio Deus uni ficou na criação original” Na mecânica newtoniana, todos os fenômenos físicos estão reduzidos ao movimento de partículas materiais, causado por sua atração mútua, ou seja, pela força da gravidade. O efeito dessa força sobre uma partícula ou qualquer outro objeto material é descrito matematicamente pelas equações do movimento enunciadas por Newton, as quais formam a base da mecânica clássica. Foram estabelecidas leis fixas de acordo com as quais os objetos materiais se moviam, e acreditava-se que eles explicassem todas as mudanças observadas no mundo físico. Na concepção newtoniana, Deus criou, no princípio, as partículas materiais, as forças entre elas e as leis fundamentais do movimento. Todo o universo foi posto em movi mento desse modo e continuou funcionando, desde então, como uma máquina, governado por leis imutáveis. A concepção mecanicista da natureza está, pois, intimamente relacionada com um rigoroso determinismo, em que a gigantesca máquina cósmica é completa mente causal e determinada. Tudo o que aconteceu teria tido uma causa definida e dado origem a um efeito definido, e o futuro de qualquer parte do sistema podia — em princípio —— ser previsto com absoluta certeza, desde que seu estado, em qualquer momento dado, fosse conhecido em todos os seus detalhes. Esse quadro de uma perfeita máquina do mundo subentendia um criador externo; um deus monárquico que governaria o mundo a partir do alto, impondo-lhe sua lei divina. Não se pensava que os fenômenos físicos, em si, fossem divinos em qualquer sentido; assim, quando a ciência tornou cada vez mais difícil acreditar em tal deus, o divino desapareceu completamente da visão científica do mundo, deixando em sua esteira o vácuo espiritual que se tornou característico da corrente principal de nossa cultura. A base filosófica dessa secularização da natureza foi a divisão cartesiana entre espírito e matéria. Em conseqüência dessa divisão, acreditava-se que o mundo era um sistema mecânico suscetível de ser descrito objetivamente, sem menção alguma ao observador humano, e tal descrição objetiva da natureza tornou-se o ideal de toda a ciência. Os séculos XVIII e XIX serviram-se da mecânica newtoniana com enorme sucesso. A teoria newtoniana foi capaz de explicar o movimento dos planetas, luas e cometas nos mínimos detalhes, assim como o fluxo das marés e vários outros fenômenos relacionados com a gravidade. O sistema matemático do mundo elaborado por Newton estabeleceu-se rapidamente como a teoria correta da realidade e gerou enorme entusiasmo entre cientistas e o público leigo. A imagem do mundo como uma máquina perfeita, que tinha sido introduzida por Descartes, era então considerada um fato comprovado, e Newton tornou-se o seu símbolo. Durante os últimos vinte anos de sua vida, Sir Isaac Newton reinou na Londres setecentista como o homem mais famoso de seu tempo, o grande sábio de cabelos brancos da revolução científica. As descrições desse período da vida de Newton soam-nos muito familiares por cansa de nossas recordações e fotografias de Albert Einstein, que desempenhou um papel muito semelhante em nosso século. Encorajados pelo brilhante êxito da mecânica newtoniana na astronomia, os físicos estenderam-na ao movimento contínuo dos fluidos e às vibrações de corpos elásticos, e ela continuou a funcionar. Ao final, até mesmo a teoria do calor pôde ser reduzida à mecânica quando se percebeu que o calor era a energia gerada por um complicado movimento de “agitação” de átomos e moléculas. Assim, muitos fenômenos térmicos, como a evaporação de um líquido, ou a temperatura e pressão de um gás, puderam ser entendidos sob um ponto de vista puramente mecanicista. O estudo do comportamento físico dos gases levou John Dalton à formulação de sua célebre hipótese atômica, provavelmente o mais importante passo em toda a história da química. Dalton possuía uma vívida imaginação pictórica, e tentou explicar as propriedades das misturas de gases com a ajuda de elaborados desenhos de modelos geométricos e mecânicos de átomos. Seus principais pressupostos eram que todos os elementos químicos compõem-se de átomos e que todos os átomos de um determinado elemento são semelhantes, mas diferem dos átomos de todos os outros elementos em massa, tamanho e propriedades. Usando a hipótese de Dalton, os químicos do século XIX desenvolveram uma precisa teoria atômica da química que preparou o caminho para a unificação dos conceitos da física e da química no século XX. Assim, a mecânica newtoniana estendeu-se muito além da descrição dos corpos macroscópicos. O comportamento de sólidos, líquidos e gases, incluindo os fenômenos de calor e som, foi explicado com sucesso em termos do movimento de partículas materiais elementares. Para os cientistas dos séculos XVIII e XIX, esse enorme sucesso do modelo mecanicista confirmou sua convicção de que o universo era, chamada eletrodinâmica, culminou com a descoberta de que a luz é, de fato, um campo eletromagnético rapidamente alternante, que viaja através do espaço em forma de ondas. Apesar dessas mudanças de extraordinário alcance, a mecânica newtoniana mantinha sua posição, continuava a ser a base de toda a física. O próprio Max tentou explicar seus resultados em termos mecânicos, interpretando os campos como estados de tensão mecânica num meio muito leve e difundido por toda parte, chamado éter, e as ondas eletromagnéticas como ondas elásticas desse éter. Entretanto, ele usou várias interpretações mecânicas de sua teoria ao mesmo tempo e, segundo parece, não levou nenhuma delas realmente a sério, sabendo intuitivamente que as entidades fundamentais em sua teoria eram os campos e não os modelos mecânicos. Caberia a Einstein reconhecer claramente esse fato em nosso século, quando declarou que o éter não existe e que os campos eletromagnéticos são entidades físicas independentes que podem viajar através do espaço vazio e não podem ser explicadas -mecanicamente. Enquanto o eletromagnetismo destronava a mecânica newtoniana como teoria fundamental dos fenômenos naturais, surgiu uma nova tendência do pensamento que suplantou a imagem da má quina do mundo newtoniana e iria dominar não só o século XIX, mas todo o pensamento científico futuro. Ela envolvia a idéia de evolução — de mudança, crescimento e desenvolvimento. A noção de evolução surgira na geologia, onde os estudos meticulosos de fósseis levaram os cientistas à conclusão de que o estado atual da Terra era o resultado de um desenvolvimento contínuo causado pela ação de forças naturais durante imensos períodos de tempo. Mas os geólogos não foram os únicos a pensar nesses termos. A teoria do sistema solar, proposta por Immanuel Kant e Pierre Laplace, baseava no pensamento evolucionista ou desenvolvimentista; os conceitos evolucionistas foram fundamentais para a filosofia política de Hegel e Engeis; poetas e filósofos, indistintamente, durante todo o século XIX, preocuparam-se profundamente com o problema do devir. Essas idéias constituíram o background intelectual para a formulação mais precisa e de mais longo alcance do pensamento evolucionista: a teoria da evolução das espécies, em biologia. Desde a Antiguidade, os filósofos naturais tinham alimentado a idéia de uma “grande cadeia do ser”. Essa cadeia, entretanto, era concebida como uma hierarquia estática, que começava em Deus, no topo, e descia, através de anjos, seres humanos e animais, até as formas cada vez mais inferiores de vida, O número de espécies era fixo; não mudara desde o dia de sua criação. Como disse Lineu, o grande botânico e classificador: “Calculamos tantas espécies quantas as saídas aos pares das mãos do Criador” 30, Essa idéia das espécies biológicas estava em completa concordância com a doutrina judaico- cristã e ajustava-se bem ao mundo newtoniano. A mudança decisiva ocorreu com Jean-Baptiste Lamarck, no começo do século XIX; essa mudança foi tão drástica que Gregory Bateson, um dos pensadores mais esclarecidos e profundos do nosso tempo, comparou-a à revolução de Copérnico: “Lamarck, provavelmente o maior biólogo da história, inverteu essa escala de explicação. Foi ele o homem que disse que a escala começa com os infusórios e que havia mudanças que culminavam no homem. Essa inversão completa da taxonomia é uma das mais surpreendentes façanhas de todos os tempos. Foi o equivalente, em biologia, à revolução de Copérnico em astronomia” Lamarck foi o primeiro a propor uma teoria coerente da evolução, segundo a qual todos os seres vivos teriam evoluído a partir de formas mais primitivas e mais simples, sob a influência do meio ambiente. Embora os detalhes da teoria lamarckiana tivessem que ser abandonados mais tarde, ela representou, não obstante, o primeiro passo importante. Muitas décadas depois, Charles Darwin apresentou aos cientistas uma esmagadora massa de provas em favor da evolução biológica, colocando o fenômeno acima de qualquer dúvida. Apresentou também uma explicação baseada nos conceitos de variação aleatória — hoje conhecida como mutação randômica — e seleção natural, os quais continuariam sendo as pedras angulares do moderno pensamento evolucionista. A monumental Origem das espécies de Darwin sintetizou as idéias de pensadores anteriores e deu forma a todo o pensamento biológico subseqüente. Seu papel nas ciências humanas foi semelhante ao dos Principia de Newton na física e na astronomia, dois séculos antes. A descoberta da evolução em biologia forçou os cientistas a abandonarem a concepção cartesiana segundo a qual o mundo era uma máquina inteiramente construída pelas mãos do Criador, O universo, pelo contrário, devia ser descrito como um sistema em evolução e em permanente mudança, no qual estruturas complexas se desenvolviam a partir de formas mais simples. Enquanto essa nova forma de pensamento era elaborada nas ciências humanas, conceitos evolucionistas surgiam também na física. Contudo, enquanto a evolução, em biologia, significou um movimento no sentido de uma ordem e uma complexidade crescentes, na física passou a significar justamente o oposto — um movimento no sentido de uma crescente desordem. A aplicação da mecânica newtoniana ao estudo dos fenômenos térmicos — o que envolveu o tratamento de líquidos e gases como complicados sistemas mecânicos — levou os físicos à formulação da termodinâmica, a “ciência da complexidade”. A primeira grande realização dessa nova ciência foi a descoberta de uma das leis mais fundamentais da física, a lei da conservação da energia. Diz essa lei que a energia total envolvida num processo é sempre conservada. Pode mudar de forma do modo mais complicado, mas nenhuma porção dela se perde. Os físicos descobriram essa lei em seu estudo das máquinas a vapor e outras máquinas geradoras de calor, e é também conhecida como a primeira lei da termodinâmica. A segunda lei da termodinâmica é a da dissipação da energia. Enquanto a energia total envolvida num processo é sempre constante, a quantidade de energia útil diminui, dissipando-se em calor, fricção, etc. Esta segunda lei foi formulada pela primeira vez por Sadi Carnot, em termos da tecnologia das máquinas térmicas, mas não tardou a ser reconhecido que envolvia um significado muito mais amplo. Ela introduziu na física a idéia de processos irreversíveis, de uma “flecha do tempo”. De acordo com a segunda lei, há uma certa tendência nos fenômenos físicos. A energia mecânica dissipa-se em calor e não pode ser completamente recuperada; quando se juntam água quente e água fria, resulta a água morna, e os dois líquidos não se separam. Do mesmo modo, quando se mistura um saco de areia branca com •um saco de areia preta, resulta areia cinzenta, e quanto mais agitarmos a mistura mais uniforme será o cinzento; não veremos as duas espécies de areia separarem-se espontaneamente. O que todos esses processos têm em comum é que avançam numa certa direção — da ordem para a desordem —, e esta é a formulação mais geral da segunda lei da termodinâmica: qualquer sistema físico isolado avançará espontaneamente na direção de uma desordem sempre crescente. Em meados do século, para expressar essa direção, na evolução de sistemas físicos, numa forma matemática precisa, Rudolf Clausius introduziu uma nova quantidade a que chamou “entropia”. O termo representa uma combinação de “energia” e “tropos”, a palavra grega que designa transformação ou evolução. Assim, entropia é uma quantidade que mede o grau de evolução de um sistema físico. De acordo com a segunda lei, a entropia de um sistema físico isolado continuará aumentando; como essa evolução é acompanhada de crescente desordem, a entropia também pode ser vista como uma medida de desordem. A formulação do conceito de entropia e a segunda lei da termo- dinâmica estão entre as mais importantes contribuições para a física no século XIX. O aumento de entropia em sistemas físicos, que marca a direção do tempo, não podia ser explicado pelas leis da mecânica newtoniana, e permaneceu um mistério até que Ludwig Boltzmann esclareceu a situação mediante a introdução de uma idéia adicional, o conceito de probabilidade. Com a ajuda da teoria das probabilidades, o comportamento de sistemas mecânicos com plexos pôde ser descrito em termos de leis estatísticas, e a termo- dinâmica se assentou numa sólida base newtoniana, conhecida como mecânica estatística. Boltzmann mostrou que a segunda lei da termodinâmica é uma lei estatística, Sua afirmação de que certos processos não ocorrem — por exemplo, a conversão espontânea de energia térmica em energia mecânica — não significa que eles sejam impossíveis, mas apenas que são extremamente improváveis. Em sistemas microscópicos que consistem em apenas algumas moléculas, a segunda lei é violada regularmente; mas, em sistemas macroscópicos, que consistem num grande número de moléculas ‘ a probabilidade de que a entropia total do sistema aumente torna-se virtualmente certa. Assim, em qualquer sistema isolado, composto de um elevado número -de moléculas, a entropia — ou desordem — continuará aumentando até que, finalmente, o sistema atinja um estado de máxima entropia, também conhecido como “morte térmica”; nesse estado, toda a atividade cessa, estando o material uniformemente distribuído e à
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved