Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Yakov I. Perelman - Astronomia recreativa ebook, Notas de estudo de Astronomia

Astronomia recreativa

Tipologia: Notas de estudo

2010

Compartilhado em 13/10/2010

mayk-coelho-1
mayk-coelho-1 🇧🇷

4.5

(11)

28 documentos

Pré-visualização parcial do texto

Baixe Yakov I. Perelman - Astronomia recreativa ebook e outras Notas de estudo em PDF para Astronomia, somente na Docsity! Astronomía Recreativa Yakov Perelman Nota Preliminar Preparado por Patricio Barros Antonio Bravo 1 NOTA PRELIMINAR El libro de Y. I. Perelman pone al lector en contacto con problemas aislados de la astronomía, con sus maravillosos progresos científicos, y describe en forma seductora los fenómenos más importantes del cielo estrellado. El autor trata muchos fenómenos habituales, de observación diaria, desde un punto de vista totalmente nuevo e inesperado, y revela su verdadera esencia. El propósito del libro es desplegar ante el lector el inmenso cuadro del espacio sideral y los hechos notables que en él tienen lugar, y despertar interés hacia una de las ciencias más cautivadoras, la ciencia del firmamento. Y. I. Perelman murió en 1942, durante el sitio de Leningrado, y no tuvo tiempo de llevar a cabo su propósito de escribir una continuación de este libro. Astronomía Recreativa Yakov Perelman Prefacio Preparado por Patricio Barros Antonio Bravo 1 PREFACIO La astronomía es una ciencia dichosa; según la expresión del sabio francés Arago, no necesita elogios. Sus éxitos son tan cautivadores que no hay necesidad de llamar la atención sobre ellos. Sin embargo, la ciencia del cielo no está sólo constituida por descubrimientos maravillosos y teorías audaces. Su fundamento lo constituyen hechos comunes que se repiten día a día. Las personas que no son aficionadas al estudio del cielo tienen, en la mayoría de los casos, un conocimiento bastante vago de este aspecto ordinario de la astronomía y se interesan poco por él, ya que es difícil concentrar la atención en aquello que se halla siempre delante de los ojos. Esta parte vulgar, cotidiana, de la ciencia del cielo, es su primera y no su última frontera, y constituye una parte importante, aunque no exclusiva, del contenido de la Astronomía recreativa. Este libro se esfuerza ante todo en ayudar al lector a aclarar y comprender los hechos astronómicos fundamentales. Esto no quiere decir que sea semejante a un texto elemental de introducción. La manera de tratar el tema lo distingue fundamentalmente de un libro de texto. Hechos comunes; conocidos a medias, son presentados aquí en una forma no acostumbrada, a menudo paradójica, desde puntos de vista nuevos, inesperados, lo cual despierta el interés y aumenta la atención hacia ellos. La exposición está exenta en lo posible de términos especializadas y de todas esas fórmulas complicadas que son un obstáculo habitual entre el lector y el libro de astronomía. Con frecuencia se hace a los libros de divulgación el reproche de que en ellas no es posible aprender nada seriamente. El reproche es en cierta medida justo, y se fundamenta (si se tienen en cuenta las obras sobre ciencias naturales exactas) en la costumbre de eludir en ellos todo cálculo numérico. Y; sin embargo, el lector empezará a dominar el tema del libro cuando empiece a comprender, aunque sólo sea en forma elemental, los valores numéricos que en él se hallan. Por esto, en la Astronomía recreativa, como en sus otros libros de la misma serie, el autor no elude los cálculos sencillos, y sólo se preocupa porque sean expuestos en forma elemental y al alcance de quienes han estudiado las matemáticas de la segunda enseñanza. Los ejercicios de este género no sólo consolidan los conocimientos adquiridos, sino que, además, preparan para la lectura de libros más profundos. En el presente manual se incluyen capítulos referentes a la Tierra, la Luna, los planetas, las estrellas y la gravitación. Por otra parte, el autor ha dado preferencia a temas que habitualmente no se exponen en las obras de divulgación: Los temas no tratados en este manual piensa desarrollarlos el autor, a su tiempo, en un segundo libro de Astronomía recreativa. Por lo demás, las obras de este género no se proponen agotar en forma sistemática el riquísimo contenido de la astronomía contemporánea. Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 4 Imagine ahora que su objetivo es encontrar la ruta más corta entre un puerto y otro, ambos en el mismo paralelo. En el mar podrá navegar en cualquier dirección, y si sabe como, podrá encontrar siempre el camino más corto. Podría pensar naturalmente que el camino más corto seria navegar a través del paralelo que une ambos puertos, una línea recta en nuestro mapa. Después de todo, que puede ser más corto que una línea recta. Pero se equivocaría; la ruta a través del paralelo no sería la más corta. De hecho en la superficie de una pelota, el camino más corto entre dos puntos es el arco de confluencia del gran circulo 1. Sin embargo, la latitud es un pequeño circulo. El arco del gran círculo es menos curvado que el arco de cualquier pequeño circulo que pasen por esos dos puntos; el radio más grande pertenece a la curva más pequeña. Coja un trozo de hilo y estírelo a través del globo entre los dos puntos que haya elegido (ver Figura 3): notará que no sigue la línea del paralelo. Nuestro trozo de hilo incuestionablemente nos muestra la ruta más corta, así que si no coincide con el paralelo, lo mismo sucederá en las cartas náuticas, donde los paralelos están indicados como líneas rectas. La ruta más corta no será una línea recta así que solo puede ser una línea curva. Eligiendo una ruta para el ferrocarril entre San Petersburgo y Moscú, según nos cuenta la historia, los ingenieros no conseguían ponerse de acuerdo. El Zar Nicolás I resolvió la situación dibujando una línea recta entre los dos puntos. Con un mapa con la proyección de Mercator el resultado habría sido embarazoso. La vía férrea hubiera resultado curva y no recta. Por medio de un simple cálculo cualquiera puede ver por si mismo que una línea curva en un mapa es, de hecho, más corta que la que tomarías como recta. Imaginemos que nuestros hipotéticos puertos están en la misma latitud que Leningrado, aproximadamente en el paralelo 60 y separados por unos 60º. Figura 3. Una manera simple de encontrar el camino más corto entre dos puntos es estirar un pedazo de hilo entre los puntos dados en un globo. 1 “El gran círculo en la superficie de una esfera es cualquier círculo, cuyo centro coincida con el centro de la esfera. Todos los restantes círculos son denominados pequeños círculos.” Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 5 En la Figura 4, el punto O designa el centro del globo y AB el arco de 60º de la línea latitudinal donde se encuentran los puertos A y B. El punto C designa el centro de ese círculo latitudinal. Figura 4. Cómo calcular las distancias entre los puntos A y B en una esfera a lo largo de los arcos del paralelo y el gran círculo. Al dibujar a través de los dos puertos un gran arco del círculo imaginario con su centro en O, el centro del globo, su radio resulta OB = OA = R, de modo que será aproximado, pero no coincidirá exactamente con el arco AB. Calculamos ahora la longitud de cada arco. Como los puntos A y B están a 60° de latitud, los radios OA y OB forman un ángulo de 30° con OC el último siendo el eje global imaginario. En el triángulo rectángulo ACO, el lado CA (= r), adyacente al ángulo recto y opuesto al ángulo de 30°, es igual a la mitad de la hipotenusa AO, de modo que r = R/2. Como la longitud del arco AB es una sexta parte de la longitud del círculo latitudinal, esa longitud es la siguiente: kilómetros 333.3 2 000.40 6 1 =×=AB Para determinar la longitud del arco del mayor de los círculos, debemos encontrar el valor de ángulo AOB. Como la cuerda del arco AB, es el lado de un triángulo equilátero inscrito en el mismo pequeño circulo, AB = r = R/2. Si dibujamos una línea recta OD, uniendo el punto O, el centro del globo, con el punto D a medio camino de la cuerda del arco AB, obtenemos el triángulo rectángulo ODA. Si DA es ½ AB y OA es R, entonces el seno AOD = AD: AO = R/4: R = 0.25. Encontramos (de las tablas apropiadas) que ∠AOD = 14° 28'30" y que ∠AOB = 28°57’. Ahora será fácil encontrar el camino más corto, tomando la longitud de un minuto del gran círculo del globo como una milla náutica, o más o menos 1,85 kilómetros. Por lo tanto, 28°57' = 1,737’ ≈ 3,213 km. Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 6 Así, encontramos que la ruta a lo largo del círculo latitudinal, indicada en las cartas náuticas por una línea recta, es 3,333 km., mientras que la ruta del gran círculo, una línea curva en el mapa, es de 3,213 km., es decir 120 km. más corta. Equipado con un pedazo de hilo y un globo terrestre de escuela, encontrará fácilmente nuestros dibujos correctos y verá por usted mismo que los grandes arcos del círculo realmente son como se muestran allí. La ruta marítima aparentemente "recta" de África a Australia, trazada en la Figura 1, es de 6.020 millas, considerando que la ruta curva es de sólo 5.450, o 570 millas (1,050 km.) menos. En la carta de navegación la línea aérea "recta" que une Londres y Shangai pasaría a través del Mar Caspio, teniendo en cuenta que el camino más corto es el norte de Leningrado. Uno puede imaginar bien cuan importante es esto desde el punto de vista de ahorrar tiempo y combustible. Considerando que en la era de los grandes veleros no siempre será un artículo de valor, el hombre en aquel momento no consideró el tiempo aun como "dinero", con la llegada del buque de vapor, cada tonelada extra de carbón utilizada significaba dinero. Eso explica por qué los barcos toman el camino más corto, confiando principalmente no en los mapas de la Proyección de Mercator, sino en lo que se conocen como mapas de proyección "Central" que indican los grandes arcos del círculo mediante líneas rectas. ¿Por qué, entonces, los marineros de tiempos antiguos usaron esos mapas engañosos y se introdujeron en rutas poco ventajosas? Usted estaría equivocado si pensó que los marineros de tiempos atrás no sabían nada sobre las cualidades específicas de las Cartas de Navegación que antes hemos mencionado. Naturalmente, ésa no es la autentica razón. El caso es que, junto a sus inconvenientes, los mapas de la Proyección de Mercator poseen, varios valiosos puntos para los marineros. En primer lugar, conservan los contornos, sin distorsiones, de pequeñas partes separadas del globo. Esto no se altera por el hecho de que cuanto mayor es la distancia desde el Ecuador, más alargados son los contornos. En las latitudes altas la distorsión es tan grande que cualquiera que no conozca los rasgos peculiares de las Cartas de Navegación creería que Groenlandia es tan grande como África, o Alaska más grande que Australia, sin embargo, realmente, Groenlandia es 15 veces más pequeña que África, mientras que Alaska, incluso junto a Groenlandia, no sería más de la mitad de Australia. Esa persona tendría por lo tanto, una concepción completamente errónea del tamaño de los diferentes continentes. Pero el marinero, al corriente de estas peculiaridades no estaría en desventaja, porque dentro de las pequeñas secciones del mapa, la Carta de Navegación proporciona un cuadro exacto (Figura 5). La Carta náutica es, mas aun, un recurso para resolver las tareas prácticas de la navegación. Es, a su manera, el único mapa en el que el verdadero curso recto de un navío se indica por una línea recta. Dirigir un curso firme significa mantener la misma dirección, a lo largo del mismo rumbo, o en otras palabras cruzar todos los meridianos con el mismo ángulo. Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 9 Figura 6. ¿Por qué son los días solares más largos que los días siderales? (Vea el texto para los detalles) Nuestros relojes no son fijos al Sol real sino que funcionan con relación a un Sol ficticio que ni brilla ni calienta, pero que se ha inventado para el solo propósito de evaluar el tiempo correctamente. Imagine que un cuerpo celeste cuyo movimiento a lo largo del año es constante, tarda exactamente el mismo período de tiempo que el Sol real en pasar por la Tierra. En Astronomía este cuerpo ficticio se conoce como el Sol Medio. El momento en que cruza la línea cenit - sur se llama mediodía media, el intervalo entre dos mediodías medias se conoce como el día solar medio, así que el tiempo queda medido como el tiempo solar medio. Nuestros relojes quedan regulados según este tiempo solar medio. El reloj de sol, sin embargo, muestra el verdadero tiempo solar por la situación dada por la sombra del Sol. El lector podría pensar de lo que se ha dicho que el globo gira irregularmente alrededor de su eje, y que ésta es la razón para la variación en la longitud del verdadero día solar. Estaría equivocado, ya que esta variación se debe al desnivel de otro de los movimientos de la Tierra en su viaje alrededor del Sol. Medite un poco y verá por qué esto afecta a la longitud del día. Regrese a la Figura 6. Aquí usted ve dos posiciones sucesivas del globo. Primero la posición izquierda. La flecha inferior derecha muestra la dirección de la rotación de la Tierra, en sentido contrario a las aguas del reloj, si lo observamos desde el Polo Norte. En el punto A es ahora mediodía; este punto está directamente opuesto el Sol. Ahora imagine que la Tierra ha hecho una rotación completa; en este tiempo se ha desplazado hacia la derecha tomando la segunda posición. El radio de la Tierra con respecto al punto A es el mismo que el día anterior, pero por otro lado, el punto A ya no se encuentra directamente frente al sol. No es mediodía para nadie en el punto A; desde que el Sol se sale de la línea, la Tierra tendrá que girar unos minutos más para que el mediodía alcance el punto A. ¿Qué implica esto entonces?. Que el intervalo entre dos verdaderos mediodías solares es más largo que el tiempo que necesita la Tierra para completar un movimiento de rotación. La Tierra viajar alrededor del Sol a lo largo de una órbita circular, con el Sol en el centro, de modo que la diferencia entre el período real de rotación y el que nosotros suponemos con respecto al Sol será constante todos los días sin excepción. Esto se establece fácilmente, sobre todo si tenemos en cuenta el hecho de que estas pequeñas fracciones de tiempo suman en el curso de un año un día entero (en su movimiento orbital la Tierra realiza una rotación extra al año); por consiguiente la duración real de cada rotación es igual a: 365 ¼ días: 366 ¼ = 23 hrs. 56 min. 4 sec. Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 10 A propósito, deberíamos notar que la longitud "real" de un día simplemente es el período de rotación de la Tierra con relación a cualquier estrella: de aquí el término de día "sideral." Así el día sideral es, por promedio, 3 min. 56 sec., o, redondeando, cuatro minutos más corto que el día solar. La diferencia no es uniforme, en primer lugar, porque la órbita de la Tierra alrededor del Sol es elíptica, no circular, con la Tierra moviéndose más rápida y más lentamente cuando se encuentra más cerca o más lejos del Sol, y, en segundo lugar, porque el eje de rotación de la Tierra esta inclinado con respecto a la elíptica. Éstas son las dos razones por las qué en diferentes ocasiones los días solares verdaderos y los días solares medios varían en cuestión de minutos, alcanzando los 16 minutos de diferencia en algunas ocasiones. Las dos medidas de tiempo coincidirán sólo cuatro veces por año: el 15 de abril, el 14 de junio, el 1 de septiembre y el 24 de diciembre. Y recíprocamente, el 11 de febrero y el 2 de noviembre la diferencia será la más grande – mas o menos de un cuarto de una hora. La curva en la Figura 7 muestra el grado de diferencia en los diferentes momentos del año. Figura 7. Este mapa llamado “mapa de ecuación de tiempo”, muestra lo grandes que son las diferencias en cualquier día entre el verdadero mediodía solar y el mediodía solar medio. Por ejemplo, el 1 de abril que un reloj que mida el tiempo con exactitud debe mostrar las 12:05 al verdadero mediodía. Antes de 1919, las personas en la URSS fijaban sus relojes con relación al tiempo solar local. En cada meridiano existía un tiempo diferente (el mediodía "local"), de modo que cada pueblo tenía su propio tiempo local; sólo los itinerarios de tren se compilaron basándose en la hora de Petrogrado como tiempo común para el país. De este modo, los residentes urbanos reconocieron dos tiempos distintos, el "tiempo del pueblo" y "el tiempo del ferrocarril", siendo el primero de éstos el tiempo medio solar de cada localidad, mostrado por el reloj de cada pueblo, y siendo el último, el de Petrogrado, el tiempo medio solar, mostrado por el reloj de la estación. Hoy en día los itinerarios ferroviarios en la URSS se rigen por la hora de Moscú. Desde 1919 el control horario en la URSS no ha sido basado en el tiempo local, sino en lo que se llama el tiempo zonal. Los meridianos dividen el globo en 24 zonas iguales, de modo que las localidades dentro de una zona tienen la misma hora. Así hoy día, el globo tiene simultáneamente 24 tiempos diferentes, no la legión de horarios que existía antes de que la cuenta de tiempo zonal fuese introducida. A estas tres maneras de contar el tiempo: 1) el verdadero tiempo solar, 2) el tiempo solar medio local, y 3) el tiempo zonal, nosotros debemos agregar una cuarta, usada sólo por los astrónomos, el tiempo "sideral", moderado basándose en el antes comentado día sideral que como ya sabemos, es aproximadamente cuatro minutos más corto que el día solar medio. El 22 de septiembre, el tiempo sideral y solar coinciden. A partir de esto, el primero salta cuatro minutos hacia delante cada día. Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 11 Finalmente, hay una quinta manera de contar el tiempo, conocida como, tiempo de verano, utilizada en la URSS todo el año, y en la mayoría de los países europeos en verano. El tiempo de verano es exactamente una hora antes del tiempo zonal. Esto se utiliza para ahorrar combustible para la iluminación artificial empezando y acabando el día laborable más pronto durante el periodo más luminoso del año, entre primavera y otoño. En el Oeste, se utiliza todas las primaveras, a la una a. m. la manecilla horaria se mueve a las dos, mientras en otoño el movimiento de la manecilla se invierte. En la URSS, los relojes han estado adelantados durante el ciclo anual, verano e invierno. Aunque esto no ahorra más electricidad, asegura un trabajo más rítmico en las fábricas. El tiempo de verano se introdujo por primera vez en la Unión Soviética en 19173; durante algún tiempo los relojes estuvieron dos e incluso tres horas adelantados. Tras un descanso de varios años, el tiempo de verano se decretó de nuevo en la URSS durante la primavera de 1930 y exactamente significa estar una hora por delante del tiempo zonal. Volver La duración de la luz diurna. Para un cálculo exacto de la duración de la luz diurna en cualquier parte del mundo y en cualquier día del año, uno debe referirse a las tablas apropiadas en un almanaque astronómico. Pero el lector apenas necesitará este nivel de exactitud; para un cálculo rápido pero veraz bastaría con referirse al dibujo añadido en la Figura 8. Figura 8. Una tabla de duración de la luz diurna. (vea el texto para los detalles) Su lado de la izquierda indica la luz del día en horas. La base ofrece la distancia angular del Sol con relación al ecuador celeste, conocido como la "declinación" del Sol que se mide en grados. Por último, las líneas que cortan el dibujo, corresponden a las diferentes latitudes de observación. Para usar el dibujo debemos conocer la distancia angular del Sol (la "declinación") con respecto al ecuador para los diferentes días del año. (Ver la tabla a continuación) Día del año Declinación del Sol Día del año Declinación del Sol 3 En función de los cálculos hechos por el propio autor. Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 14 Trópico de Cáncer, por ejemplo, los 23º 1/2 Latitud Norte). Seis meses después, el 22 de diciembre, el cenit se encontrará en los 23º 1/2 Latitud Sur (el Trópico de Capricornio). Entre estos límites, en los trópicos, el Sol del mediodía alcanza el cenit dos veces por año, brillando de un modo que evita las sombras, o para ser más exacto, coloca las sombras justamente debajo del cuerpo que ilumina. La Fig. 11 lleva este efecto a los Polos. Aunque al contrario que la anterior situación se trata de una imagen fantástica, resulta no obstante bastante instructiva. Un hombre no puede, por supuesto, tener la sombra en seis lugares diferentes. El artista pretendía mostrar de forma llamativa la peculiaridad del Sol Polar que permite que las sombras tengan exactamente la misma longitud alrededor del reloj. Esto se debe a que en los Polos el Sol no se inclina hacia el horizonte a lo largo del día como hace en nuestras latitudes, sino que toma un camino casi paralelo al horizonte. El artista, en cualquier caso, se equivoca, al mostrar una sombra demasiado corta comparada con la altura del hombre. Para que esto fuese así, el sol debería encontrarse hacia los 40º, algo que es imposible en los Polos, donde el sol nunca brilla por encima de los 23º 1/2. Así, puede establecerse fácilmente, el lector con conocimientos de trigonometría puede hacer los cálculos, que la sombra más corta en los Polos es por lo menos 2.3 veces la altura del objeto que desarrolla esa sombra. Figura 11. En el Polo las sombras son de la misma longitud alrededor del reloj. Volver El problema de los dos trenes La pregunta Dos trenes absolutamente idénticos que viajan a la misma velocidad se cruzan viniendo de direcciones opuestas, uno va hacia el oeste y el otro hacia el este. ¿Cuál de los dos es el más pesado? La respuesta El más pesado de los dos, es decir el que más presión ofrece sobre la vía, es el tren que se desplaza contrariamente a la dirección de rotación de la Tierra, es decir, el tren que se mueve hacia el oeste. Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 15 Figura 12. El problema de los dos trenes. Al moverse lentamente alrededor del eje de la Tierra, pierde, debido al efecto centrífugo, menos peso que el expreso que se dirige hacia el este. ¿Cómo de grande es la diferencia? Tomaremos dos trenes a través del paralelo 60 a 72 kilómetros por hora o a 20 metros por segundo. En ese paralelo la tierra se mueve alrededor de su eje a una velocidad de 230 metros por segundo. Por lo tanto el expreso del este tiene un velocidad total de 230 + 20 m/s, es decir 250 m/s, y el que se desplaza hacia el oeste, una velocidad de 210 m/s. La aceleración centrífuga para el primer tren será: 2 22 1 cm/s 000,000,320 000,25 = R V Teniendo en cuenta que el radio de la circunferencia en el paralelo 60 es de 3,200 Km. Para el segundo tren la aceleración centrífuga sería: 2 22 2 cm/s 000,000,320 000,21 = R V La diferencia en el valor de aceleración centrífuga entre los dos trenes es: 2 22 cm/s 6.0 000,000,320 000,21000,252 2 2 1 ≈ − =−R VV Puesto que la dirección de la aceleración centrífuga queda en un ángulo de 60° respecto a la dirección de la gravedad, tendremos en cuenta sólo el fragmento apropiado de esa aceleración centrífuga: 0.6 cm/s2 cos 60° qué es igual a 0.3 cm/s2. Esto da una proporción a la aceleración de la gravedad de 0.3/980 o aproximadamente 0.0003 Por consiguiente el tren que se dirige al este es más ligero que el que va al oeste por un fragmento del 0.0003 de su peso. Supongamos, por ejemplo, que consiste en unos 45 vagones cargados, es decir unas 3,500 toneladas métricas. Entonces la diferencia en el peso sería 3,500 × 0.0003=1,050 kg. Para una nave de 20,000 toneladas con una velocidad de 34 kilómetros por hora (20 nudos), la diferencia sería de 3 toneladas. De este modo, la disminución en el peso de la nave que se dirige al este también se reflejaría en el barómetro; en el caso anterior el mercurio sería 0.00015 × 760, ó 0.1 mm más bajo en la nave que se dirige hacia el este. Un ciudadano de Leningrado que camina en dirección al este a una velocidad de 5 km/h, se vuelve 1 gramo y medio aproximadamente más ligero que si se desplazara en la dirección opuesta. Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 16 Volver El reloj de bolsillo como Brújula. Muchas personas saben encontrar un rumbo en un día soleado usando un reloj. Debe colocar la esfera de modo que la manecilla horaria apunte hacia el Sol. Entonces parta en dos el ángulo formado por esta manecilla y la línea que separa las 12 de las 6. La bisectriz indica el sur. No es difícil entender por qué. Considerando que el Sol tarda 24 horas en cruzar su camino completo en los cielos, la manecilla que marca la hora se desplaza por nuestro reloj en la mitad el tiempo, en 12 horas, o dobla el arco en el mismo tiempo. De hecho, si al mediodía la manecilla de la hora indica el Sol, después lo habrá dejado atrás y habrá doblado el arco. De este modo, sólo tenemos que bisecar este arco para encontrar donde se encontraba el Sol estaba a mediodía, o, en otros términos, la dirección sur (Fig. 13). Figura 13. Una manera simple pero inexacta de encontrar los puntos de la brújula con la ayuda de un reloj de bolsillo. La comprobación nos mostrará que este método es excesivamente tosco, resultando incluso a veces una docena de grados desviados. Para entender por qué, permítanos examinar el método propuesto. La razón principal para la inexactitud es que el reloj, la cara que ponemos boca arriba, se sostiene paralela al plano horizontal, considerando que el Sol en su paso diario sólo toca ese plano en los Polos. Por otra parte, su trayectoria cae angularmente en relación con el plano, tanto como a 90º en el Ecuador. De este modo, el reloj sólo dará los rumbos exactos a los Polos; en todos los restantes lugares, una desviación mayor o menor es inevitable. Miremos el dibujo (Fig. 14, a). Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 19 que en un momento diferente del año. Considerando que en Junio que el Sol nunca se pone4, en Diciembre cuando el Sol nunca sube la oscuridad prevalece durante días. Volver La luz del día y la Oscuridad Las noches "blancas" son la prueba clara de que nuestra noción de la niñez sobre la igual alternancia de la noche y del día en este mundo es demasiado simplificada. Actualmente, la alternancia de luz del día y oscuridad es más abigarrada y no encaja en el modelo típico de día y noche. En este respeto el mundo en que nosotros vivimos puede ser dividido en cinco zonas, cada una con su propia alternancia de luz diurna y oscuridad. La primera zona, exterior al ecuador en cualquier dirección, se extiende hasta los paralelos 49. Aquí, y solo aquí, se da un día completo y una noche completa cada 24 horas. La segunda zona, entre el paralelo 49 y el 65 1/2, abarca el conjunto de la Unión Soviética, el norte de Poltava, tiene un continuo crepúsculo alrededor del solsticio de verano. Esta es la zona de las noches "blancas." Dentro de la estrecha tercera banda, entre los paralelos 65 1/2 y 67 1/2º, el Sol no se pone durante varios días alrededor del 22 de junio. Ésta es la tierra del Sol de media noche. La característica de la cuarta zona, entre 67 1/2º y 83 1/2º, aparte del día continuo en junio, es la larga noche de Diciembre, cuando hay días sin ninguna salida del sol, y la mañana y el crepúsculo de la tarde duran todo el día. Ésta es la zona de los días "negros." La quinta y última zona, al norte del paralelo 83 1/2º, tiene una notable alternancia de luz diurna y oscuridad. Aquí, la ruptura hecha en la sucesión de días y noches por las noches "blancas" de Leningrado, perturba completamente el orden normal. Los seis meses entre el Verano y el solsticio de Invierno, del 22 de junio al 22 de diciembre, pueden ser divididos en cinco períodos o estaciones. Primero, el día continuo; segundo, la alternancia de día con el crepúsculo de la media noche, pero sin las noches apropiadas (las noches "blancas" de Leningrado de verano son una imitación débil de esto); tercero, el crepúsculo continuo, sin noches apropiadas o días en absoluto. El cuarto, un continuo crepúsculo que alterna con una noche más autentica alrededor de la medianoche; y quinto y último, oscuridad completa todo el tiempo. En los seis meses siguientes, de Diciembre a Junio, estos períodos siguen en el orden inverso. En el otro lado del ecuador, en el Hemisferio Sur, los mismos fenómenos se observan, lógicamente, en las latitudes geográficas correspondientes. Si nunca hemos oído hablar de las noches "blancas" en el "Lejano Sur", es sólo porque el océano reina allí. El paralelo en el Hemisferio Sur correspondiente a la latitud de Leningrado no cruza absolutamente nada de tierra; hay agua por todas partes; de modo que sólo los navegantes polares han tenido la oportunidad de admirar las noches "blancas" en el sur. Volver El enigma del Sol Polar La pregunta Los exploradores polares notan un rasgo curioso de los rayos del Sol en verano en las latitudes altas. Aunque calientan débilmente la superficie de la Tierra, su efecto en todos los objetos dispuestos verticalmente, sorprendentemente los suficientes en esa zona del mundo, es más pronunciado. Los precipicios escarpados y las paredes de las casas llegan a estar bastante calientes, las caras sufren quemaduras del sol, y más casos se pueden documentar. ¿Cuál es la explicación? 4 Sobre la Bahía de Ambarchik, el Sol no se pone del 19 de mayo al 26 de julio y en la proximidad de la Bahía de Tixi del 12 de mayo al 1 de agosto. Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 20 La respuesta Esto puede explicarse por una ley de la física según la cual cuanto menos inclinados son los rayos, más fuerte es su efecto. Ni siquiera en verano en las latitudes polares el sol sube muy alto sobre el horizonte Más allá del círculo polar, su altitud no puede exceder la mitad un ángulo recto - en las latitudes altas es considerablemente menos. Tomando esto como nuestro punto de partida, no será difícil establecer que con un objeto vertical (erguido) los rayos del Sol formen un ángulo mayor que medio ángulo recto, en otras palabras, esos rayos caen de forma empinada sobre una superficie vertical. Esto deja claro por qué los rayos del Sol en los Polos, mientras calientan débilmente la superficie, lo hacen de forma intensa en el caso de los objetos dispuestos verticalmente. Volver ¿Cuándo comienzan las Estaciones? Si la nieve está cayendo, el mercurio bajo cero, o si el tiempo es apacible, las personas en el Hemisferio Norte consideran el 21 de marzo como el fin de Invierno y el comienzo de la Primavera, que es astronómicamente cierto. Muchos no pueden entender por qué esta fecha particular ha sido escogida como la línea que divide el Invierno y la Primavera, aunque, como hemos dicho, podemos comprobar como nos afecta una cruel escarcha o como el tiempo puede ser caluroso y agradable. Lo cierto es que el principio de la primavera astronómica no tiene nada que ver con los caprichos y las vicisitudes del tiempo. El hecho de que el principio de la Primavera sea el mismo para todos los lugares en este hemisferio nos basta para mostrar que los cambios en el tiempo no son de ninguna importancia esencial aquí. ¡De hecho, las condiciones meteorológicas no pueden ser las mismas en la mitad el mundo! Buscando donde fijar le llegada de las estaciones, los astrónomos no tomaron como guía los fenómenos meteorológicos sino los astronómicos, por ejemplo, la altitud del Sol del mediodía y la duración resultante de la luz diurna. El tiempo, entonces, es solo una circunstancia complementaria. El 21 de marzo difiere de los otros días del año en que en esta fecha el límite entre la luz y la oscuridad corta los dos polos geográficos. Si sostenemos un globo junto a una lámpara, veremos que el límite del área iluminada sigue el meridiano, cruzando el ecuador y todos los paralelos con ángulos rectos. Sosteniendo el globo así, gírelo sobre su eje: cada punto en su superficie describirá un círculo, con exactamente una mitad en la sombra, y la otra mitad en la luz. Esto significa que en ese momento particular del año, la duración del día iguala a la duración de la noche. Esta igualdad se observa alrededor de todo el mundo del Polo Norte al Polo Sur. Así, el rasgo que distingue al 21 de marzo es que por todo el Mundo el día y la noche tienen la misma duración en esta fecha. Este fenómeno notable se conoce como el Equinoccio Vernal (Primaveral) - vernal porque no es el único equinoccio. Seis meses después, el 23 de septiembre de nuevo tenemos un día y una noche iguales, el Equinoccio Otoñal, con el que finaliza el Verano y llega el Otoño. Cuando en el Hemisferio Norte se da el Equinoccio de Primavera en el Hemisferio Sur se da el equinoccio otoñal, y viceversa. En un lado del Ecuador el Invierno da paso a la Primavera, en el otro, el Verano se convierte en Otoño. Las estaciones en el Hemisferio Norte no se corresponden con esas mismas estaciones en el Hemisferio Sur. Permítanos ver cómo la longitud comparativa del día y de la noche cambia a lo largo del año. Comenzando con el equinoccio otoñal, es decir, el 23 de Septiembre cuando en el Hemisferio Norte el día es más corto que la noche. Esto dura unos seis meses, con el día más corto y más corto hasta llegar al 22 de Diciembre, cuando el día se hace poco a poco más largo, y luego el 21 de Marzo, el día alcanza la noche. Desde ese momento, a lo largo de la otra mitad del año, el día en el Hemisferio Norte es más largo que la noche, alargándose hasta el 22 de Junio, y a partir de entonces reduciéndose de nuevo la duración Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 21 del día frente a la noche, pero permaneciendo más largo que esta, hasta que se alcance de nuevo el equinoccio otoñal, el 23 de Septiembre. Estas cuatro fechas marcan el principio y el final de las estaciones astronómicas. Para el Hemisferio Norte las fechas son las siguientes: 21 de marzo, el día iguala a la noche. Comienza la Primavera. 22 de junio, el día más largo. Comienza el Verano. 23 de Septiembre, el día iguala a la noche. Comienza el Otoño. 22 de Diciembre, el día más corto. Comienza el Invierno. Debajo del ecuador, en el Hemisferio Sur, la Primavera coincide con nuestro Otoño, el Invierno con nuestro Verano, y así sucesivamente. Para el beneficio del lector sugerimos en esta fase algunas preguntas que ayudarán a asimilar y memorizar lo que se ha dicho. 1. ¿Dónde en nuestro planeta el día iguala a la noche durante todo el año? 2. ¿A qué hora, hora local, el Sol subirá en Tashkent el 21 de marzo, en Tokio en la misma fecha, y en Buenos Aires? 3. ¿A qué hora, hora local, el Sol se pondrá el 23 de septiembre, en Novosibirsk, en Nueva York, y en el Cabo de Esperanza Buena? 4. ¿A qué hora subirá el Sol en los puntos del ecuador el 2 de agosto y el 27 de febrero? 5. ¿Es posible tener escarcha en Julio y una ola de calor en Enero? 5 Volver Tres "Si" A veces es más duro entender lo usual que lo extraño. Comprendemos la utilidad de la numeración decimal que aprendemos en la escuela, sólo cuando intentamos usar algún otro sistema, basado por ejemplo en el siete o en el doce. Para apreciar realmente el papel que la gravedad juega en nuestra vida, imaginemos un fragmento, o al contrario, un múltiplo de lo que realmente es, un artificio al que nosotros acudiremos después. Entretanto permítanos recurrir a los "si" para comprender bien las condiciones del movimiento de la Tierra alrededor del Sol. Permítanos comenzar con el axioma, que determina que el eje de la Tierra forma un ángulo de 66 ½ °, o aproximadamente ¾ de un ángulo recto, con respecto al plano orbital de la Tierra. Usted apreciará lo que esto significa imaginando este ángulo no como tres cuartos, sino como un completo ángulo recto. En otros términos, suponga que el eje de rotación de la Tierra sea perpendicular a su plano orbital. ¿Qué cambios introduciría esto en la rutina de la Naturaleza? a. Si el Eje de la Tierra Fuera Perpendicular al Plano Orbital Bien, suponga que los artilleros de Julio Verne han logrado su proyecto de "enderezar el eje" de la Tierra, y le hacen formar un ángulo recto al plano del vuelo orbital de nuestro planeta alrededor del Sol. ¿Qué cambios observaríamos nosotros en la Naturaleza? En primer lugar, la Estrella Polar - α Ursae Minoris Polaris - dejaría de ser polar, ya que la continuación del eje de la Tierra no pasaría cerca de ella, sino cerca de algún otro punto alrededor en el giro de la cúpula celeste. 5 Las respuestas: 1) El día y la noche siempre tienen una longitud igual en el ecuador, como el límite entre la luz y la oscuridad que también divide el ecuador en dos mitades iguales, independiente de la posición de la Tierra. 2 y 3) Durante los equinoccios el Sol sube y pasa por el mundo a las mismas horas, 6 a. m. y 6 p. m. ( en hora local). 4) El Sol sale en el Ecuador a las 6 a. m. todos los días a lo largo del año. 5) Las escarchas de Julio y las olas de calor de Enero son episodios comunes en las latitudes del sur. Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 24 Figura 16. Así es cómo la Tierra se movería alrededor del Sol si el eje de rotación estuviera en su plano Orbital. En las proximidades de los polos habría un día de seis meses durante el cual, el Sol subiría en espiral del horizonte al cenit, y luego descendería de la misma forma hacia el horizonte. Tras esto viviríamos una noche de seis meses. Día y noche quedarían divididos por un crepúsculo de varios días de duración. Antes de desaparecer bajo el horizonte, el Sol cruzaría los cielos durante varios días, rozando el horizonte. Un verano así fundiría todo el hielo acumulado durante el invierno. En las latitudes medias los días rápidamente se harían más largos con el comienzo de la Primavera; tras esto, tendríamos luz diurna durante varios días. Ese largo día significaría aproximadamente el número de días que coincidiera con el número de grados que distan del Polo y su duración sería aproximadamente el número de días igual a los grados del doble de la latitud. En Leningrado, por ejemplo, esta continua luz diurna empezaría 30 días después del 21 de marzo, y duraría 120 días. Las noches reaparecerían 30 días antes del 23 de septiembre. En invierno sucedería lo contrario; una continua luz diurna sería reemplazada por una oscuridad continua de aproximadamente la misma duración. Sólo en el ecuador la noche y el día serían siempre iguales. El eje de Urano se inclina sobre su plano orbital mas o menos como se describe anteriormente; su inclinación hacia su propio plano en su camino alrededor del Sol es de sólo 8º. Uno podría decir de Urano que gira alrededor del Sol "echándose a su lado." Estos tres "si”, podrían con toda la probabilidad, dar una buena idea al lector de la relación entre el clima y la inclinación del eje de la Tierra. No es accidental que en griego la palabra "clima" signifique "inclinación" d. Un "Si" Más Permítanos ahora regresar a otro aspecto de los movimientos de nuestro planeta, la forma de su órbita. Como cada planeta, la Tierra cumple la primera ley de Kepler que es que cada planeta sigue un camino elíptico del que el Sol es uno de los focos. ¿Cómo es la elipse de la órbita terrestre? ¿Difiere significativamente de un círculo? Los libros de texto y los folletos de astronomía elemental pintan a menudo la órbita del globo como una elipse bastante extendida. Esta imagen, mal entendida, queda fija en Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 25 muchas mentes para toda la vida; muchas personas permanecen convencidas que la órbita de la Tierra es una elipse notablemente larga. Sin embargo, esto no es así en absoluto; la diferencia entre la órbita de la Tierra y un círculo es tan despreciable que no puede dibujarse de otra forma que no sea como un círculo. Supongamos que en nuestro dibujo el diámetro de la órbita es un metro. La diferencia entre él y un círculo sería menos que el espesor de la línea dibujada para pintarlo. Incluso el exigente ojo del dibujante no distinguiría entre esta elipse y un círculo. Permítanos sumergirnos por un momento en la geometría elíptica. En la elipse de la Fig. 17, AB es su “eje mayor”, y CD, su “eje menor”. Aparte del centro O, cada elipse todavía tiene otro dos puntos importantes, los “focos”, puestos simétricamente en el eje mayor a ambos lados del centro. Los focos se encuentran de la siguiente manera (Fig. 18). Un par de piernas de compás se estiran para cubrir una distancia igual al semi-eje principal OB. Con una pierna en C, el fin del eje menor, describimos con la otra un arco que se cruza con el eje mayor. Los puntos de intersección, F y F1 son los focos de la elipse. Figura 17. Una elipse y sus ejes, mayor (AB) y menor (el CD). El Punto O designa su centro Las distancias iguales OF y OF1 se designarán ahora como c, y los ejes, mayor y menor, 2a y 2b. El tramo c, medido fuera de la longitud un del semi-eje mayor, por ejemplo, el fragmento c/a es la medida de la extensión de la elipse y se llama "excentricidad". Cuanto mayor sea la diferencia entre la elipse y el circulo, mayor será la excentricidad. Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 26 Figura 18. Cómo se localizan los focos de una elipse Tendremos una idea exacta de la forma de la órbita terrestre cuando conozcamos el valor de su excentric idad. Esto incluso puede determinarse sin medir el valor de la órbita. El Sol, dispuesto como uno de los focos de la órbita, nos parece en la Tierra de un tamaño diferente, algo que se debe a las diferentes distancias de los puntos de la órbita desde ese foco. A veces las dimensiones visibles del Sol aumentan, a veces disminuyen, su proporción se ajusta exactamente a la proporción de las distancias entre la Tierra y el Sol en los momentos de observación. Asumamos que el Sol sea el foco F1 de nuestra elipse (Fig. 18). La Tierra estará aproximadamente en el punto A de la órbita el 1 de julio, cuando veremos el disco más pequeño del Sol, su valor angular será 31'28". La Tierra alcanzará el punto B aproximadamente el 1 de enero, cuando aparentemente el disco del Sol está en su ángulo más grande 32'32". Así damos con la siguiente proporción: ca ca AF BF + − == 1 1 32" 32' "28 '31 de donde conseguimos la llamada proporción derivativa: 28" 31' 32" 32' 32" 32' - 28" 31' )( )( + = −++ +−− caca caca o: a c = '64 "64 Esto significa que: 017.0 60 1 == a c Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 29 Figura . 20. Una ilustración de la segunda ley de Kepler: Si el planeta viaja a lo largo de los arcos AB, CD y EF en tiempos iguales, los segmentos sombreados deben ser iguales en cuanto al área. Aplicando esto a nuestra órbita imaginaria deducimos que entre Diciembre y Febrero, cuando la Tierra está más cerca del Sol, se mueve más rápido a través de su órbita que entre Junio y Agosto. En otros términos, el invierno del Hemisferio Norte es de duración corta. Mientras que el verano al contrario, es largo, como si estuviera compensando el poco calor ofrecido por el Sol. Fig. 21 amuebla una idea más exacta de la duración de las estaciones bajo nuestras condiciones imaginadas. La elipse pinta el formulario de la nueva órbita de la Tierra, con una excentricidad 0.5. Las figuras 1-12 dividen el camino de la Tierra en las secciones que cruza a los intervalos iguales; según la ley de Kepler las secciones de la elipse divididas por los radio-vectores son iguales en el área. La Tierra alcanzará el punto 1, el 1 de Enero, el punto 2 el 1 de Febrero, el punto 3, el 1 de marzo, y así sucesivamente. El dibujo nos muestra que en esta órbita el equinoccio primaveral (A) debe darse al principio de Febrero, el otoñal (B) al final de Noviembre. Así el Invierno del Hemisferio Norte duraría poco más de dos meses, desde finales de Noviembre a comienzos de Febrero. Por otro lado la estación de días largos y un sol de mediodía alto, duraría del equinoccio primaveral al otoñal, y por lo tanto serían más de 9 meses y medio. Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 30 Figura 21. Así es cómo la Tierra giraría alrededor del Sol, si su órbita fuese una elipse muy prolongada. (El planeta cubre las distancias entre cada punto, en el mismo tiempo – un mes.) Lo contrario sucedería en el Hemisferio Sur. El Sol permanecería bajo y los días serían cortos, cuando la Tierra estuviera más lejos del Sol diurno y el calor de este menguaría al menos una novena parte. El Invierno sería mucho más riguroso y de lejos más largo que en el Norte. Por otro lado, el Verano, aunque corto, sería intolerablemente caliente. Otra consecuencia de nuestro "Si." En Enero el movimiento orbital rápido de la Tierra haría que los momentos de mediodía medio y del verdadero mediodía fueran considerablemente distintos, una diferencia de varias horas. Esto haría muy inoportuno seguir el tiempo solar medio que observamos ahora. Ahora tenemos una idea de los efectos de la posición excéntrica del Sol en la órbita de la Tierra. Primero, el Invierno en el Hemisferio Norte debe ser más corto y más apacible, y el Verano más largo que en el Hemisferio Sur. ¿Esto es realmente así? Indiscutiblemente, sí. En Enero la Tierra está más cerca del Sol que en Julio por 2 X 1/60, es decir, por 1/30. Por eso, la cantidad de calor recibida se incrementa (61/59)2 veces, en consecuencia un 6%. Esto alivia un poco la severidad del Invierno en el Hemisferio Norte. Además, el otoño y el Invierno del Hemisferio Norte juntos son aproximadamente ocho días más cortos que las mismas estaciones del Hemisferio Sur; mientras que el Verano y la Primavera en el Hemisferio Norte son ocho días más largos que en el Hemisferio Sur. Posiblemente, esta puede ser la razón por la que el hielo es más espeso en el Polo Sur. Debajo encontramos una tabla que nos muestra la longitud exacta de las estaciones en los Hemisferios Norte y Sur: Hemisferio Norte Primavera Verano Otoño Invierno Longitud 92 días 19 horas 93 días 15 horas 89 días 19 horas 89 días 0 horas Hemisferio Sur Otoño Invierno Primavera Verano Como se puede ver, el Verano en el Hemisferio Norte es 4.6 días más largo que el Invierno, y la Primavera 3 días más larga que el Otoño. Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 31 El Hemisferio Norte no retendrá esta ventaja eternamente. El eje mayor de la órbita de la Tierra está cambiando gradualmente en el espacio, con el resultado de que los puntos más cercano y más lejano a lo largo de la órbita del Sol se transfieren a otra parte. Estos movimientos representan un ciclo completo cada 21,000 años y se ha calculado que alrededor del 10700 después de Cristo el Hemisferio Sur disfrutará las ventajas antes dichas que ahora posee el Hemisferio Norte. Tampoco esta rígidamente fijada la excentricidad de la órbita de la Tierra; vacila despacio a lo largo de las épocas entre casi cero (0.003), cuando la órbita es casi un círculo, y 0.077, cuando la órbita es mas alargada, pareciéndose en eso a Marte. Actualmente su excentricidad esta menguando; disminuirá durante otros 24 milenios hasta quedar en 0.003, e invertirá el proceso entonces durante 40 milenios. Estos cambios son tan lentos que su importancia es completamente teórica. Volver ¿Cuándo Estamos más Cerca del Sol, al mediodía o por la tarde? Si la órbita terrestre fuera estrictamente circular con el Sol en su punto central, la respuesta sería muy simple. Estaríamos a mediodía más cerca del Sol, cuando los puntos correspondientes en la superficie del globo, pertenecientes a la rotación axial de la Tierra, están en conjunción con el Sol. La longitud más grande de esta proximidad al Sol sería, para los puntos en el ecuador, de 6.400 Km., la longitud del radio de la Tierra. Pero la órbita de la Tierra es una elipse con el Sol en uno de sus focos (Fig. 22). Figura 22. Un diagrama del tránsito de la Tierra alrededor del Sol. Como consecuencia, a veces la Tierra está más cerca del Sol y a veces más lejos. Durante los seis meses entre el 1 de Enero y el 1 de Julio, la Tierra se mueve alejándose del Sol y durante los otros seis se aproxima. La diferencia entre la distancia más grande y la más pequeña es de 2 × 1/60 × 150.000.000. es decir 5.000.000 kilómetros. Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 34 Figura 25. El hombre en la Luna vería el mismo vuelo como una curva. Supongamos que no estamos mirando el cuerpo que cae desde la superficie de la Tierra, sino desde la superficie de la Luna. Aunque la Luna acompaña a la Tierra en su movimiento alrededor del Sol, no está implicada en su rotación axial. Así que desde la Luna veríamos a ese cuerpo hacer dos movimientos, uno vertical hacia abajo y otro, qué no habíamos observado antes, hacia el este en una tangente con la superficie de la Tierra. Los dos movimientos simultáneos se suman, de acuerdo con las reglas de la mecánica, y, como uno es desigual y el otro uniforme, el movimiento resultante nos dará una curva. La figura 25 muestra esa curva, o cómo un hombre con una vista muy aguda vería desde la Luna un cuerpo que cae en la Tierra. Figura 26. Un cuerpo que cae libremente hacia nuestra Tierra al mismo tiempo se mueve en una tangente, descrita por los puntos de la superficie de la Tierra debido a la rotación. Permítanos ir que uno camina más allá y se imagina en el Sol que observa a través de un telescopio extra-poderoso el vuelo hacia la tierra de esta pelota pesada. En el Sol nosotros Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 35 estaremos fuera de la rotación axial de ambos el Tierra y su revolución orbital. De, nosotros veremos tres movimientos del cuerpo cayente simultáneamente (Fig. 26): 1) una gota vertical hacia la superficie de la Tierra, 2) un movimiento hacia el este a lo largo de una tangente hacia la superficie de la Tierra y 3) una ronda del movimiento el Sol. El movimiento número 1 cubre 0.5 km. El movimiento número 2, en los 10 segundos del vuelo descendente del cuerpo, cubriría, a la latitud de Moscú, 0.3 x 10 = 3 km. El tercero, y más rápido de los movimientos sería de 30 kilómetros por segundo, por lo que en los 10 segundos de su movimiento descendente viajaría 300 km. a lo largo de la órbita terrestre. En comparación con este pronunciado movimiento, los otros, de 0.5 km. hacia abajo y de 3 km. a lo largo de la tangente, apenas se distinguirían; desde un mirador en el Sol, solo veríamos el vuelo principal. ¿Qué tendríamos? Aproximadamente lo que vemos ( la escala correcta no ha sido respetada en este ejemplo) en la Figura 27. Figura 27. Esto es lo que cualquiera, observando el cuerpo que cae mostrado en la Figura 24, vería desde el Sol (la escala se ha desestimado). La Tierra se desplaza hacia la izquierda, mientras el cuerpo cae desde un punto sobre la Tierra en la posición mostrada a la derecha, a un punto correspondiente en la Tierra mostrada a la izquierda. Como se dijo anteriormente, la escala correcta no ha sido respetada - en los 10 segundos de caída, el centro de la Tierra no se habrá desplazado 14.000 kilómetros, como nuestro artista ha reflejado en el dibujo persiguiendo una mayor claridad, sino sólo 300 kilómetros. Permítanos dar otro paso e imaginarnos en una estrella, por ejemplo, en un Sol remoto, más allá incluso de los movimientos de nuestro propio Sol. Desde allí observaríamos, aparte de los tres movimientos expuestos anteriormente, un cuarto movimiento del cuerpo que cae con respecto a la estrella en la que nosotros nos encontrásemos. El valor y la dirección del cuarto movimiento dependen de la estrella que nosotros hayamos escogido, es decir, en el movimiento de todo el sistema solar con respecto a esa estrella. Figura 28. Cómo vería un observador situado en una estrella Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 36 distante un cuerpo cayendo hacia la Tierra. La Figura 28 es un caso probable cuando el sistema solar se mueve con respecto a la estrella escogida en un ángulo agudo respecto a la eclíptica, a una velocidad de 100 kilómetros por segundo (las estrellas tienen velocidades de este orden.) En 10 segundos este movimiento desplazaría al cuerpo que cae unos 1.000 kilómetros y, naturalmente, complicaría su vuelo. La observación desde otra estrella nos daría para esta misma trayectoria, otro valor y otra dirección. Podríamos ir incluso más lejos e imaginar que características podría tener el vuelo de un cuerpo que cae hacia nuestro planeta, para un observador que se encuentra más allá de la Vía Láctea, y que por lo tanto no estaría involucrado en el rápido movimiento de nuestro sistema estelar con respecto a otras islas del universo. Mas no existe finalidad alguna para hacerlo. A estas alturas, los lectores ya sabrán que, observando desde diferentes puntos el vuelo de un cuerpo que cae, este vuelo se verá de forma diferente. Volver Tiempo no terrenal Usted ha trabajado una hora y después ha descansado durante una hora. ¿Son estos dos tiempos iguales? Indiscutiblemente sí, si utilizamos un buen reloj, la mayoría de las personas así lo dirían. ¿Pero qué reloj deberíamos usar? Naturalmente, uno verificado por la observación astronómica, o en otros términos, uno que repique con el movimiento de un globo que gira con la uniformidad ideal, volviendo a los mismos ángulos en exactamente el mismo tiempo. ¿Pero cómo, puede uno preguntarse, sabemos que la rotación de la Tierra es uniforme? ¿Por qué estamos seguros de que las dos rotaciones axiales consecutivas de nuestro planeta tardan en realizarse el mismo tiempo? Lo cierto es que no podemos verificar esto mientras que la rotación de la Tierra sea una medida de tiempo. Últimamente algunos astrónomos han encontrado útil en algunos casos reemplazar de forma provisional este modelo de movimiento uniforme por otro. A continuación se exponen las razones y las consecuencias de este paso. Un cuidadoso estudio reveló que en sus movimientos, algunos de los cuerpos celestes no se comportan de acuerdo a las suposiciones teóricas, y que la divergencia no puede explicarse por las leyes de la mecánica celestial. Se encontró que la Luna, los satélites de Júpiter I y II, Mercurio, e incluso los movimientos anuales del Sol, es decir, el movimiento de nuestro propio planeta a lo largo de su propia órbita, tenían variaciones para las que no había ninguna razón aparente. Por ejemplo, la Luna se desvía de su órbita teórica al menos 1/6ª parte de un minuto de un arco en algunas épocas, y el Sol llega a un segundo de arco. Un análisis de estas incongruencias descubrió un rasgo común entre todos: en un período determinado, la velocidad de estos movimientos aumenta y, mas tarde, se ralentiza. Naturalmente se dedujo que estas desviaciones tenían una causa común. ¿No se deberá esto a la "inexactitud" de nuestro reloj natural, a la desafortunada opción de la rotación terrestre como un modelo de movimiento uniforme? La cuestión de reemplazar el “reloj terrestre” fue planteada. Provisionalmente este quedó descartado, y el movimiento investigado pasó a medirse por otro reloj natural basado en los movimientos de los satélites de Júpiter, la Luna, o Mercurio ( los movimientos de ambos o de uno u otro de estos elementos). Esta acción inmediatamente introdujo el orden satisfactorio en el movimiento de los cuerpos celestiales antes nombrados. Por otro lado, la rotación de la Tierra medida por este nuevo reloj resultó ser desigual – desacelerando durante unas docenas de años, ganando velocidad en las próximas docenas, y reduciendo después esa velocidad una vez más. Astronomía Recreativa Yakov Perelman Capítulo 1 Preparado por Patricio Barros Antonio Bravo 39 La respuesta común es que el mayor número de viernes en el mes de Febrero es de cinco y el menor, cuatro. Sin duda alguna, es cierto que si en un año bisiesto el 1 de Febrero cae en viernes, el 29 también será viernes, sumando por lo tanto cinco viernes en total. Sin embargo, es posible calcular el doble de viernes de un mes de Febre ro. Imagine una nave recorriendo el camino existente entre Siberia y Alaska y dejando la orilla Asiática regularmente todos los viernes. ¿Cuántos viernes contará su capitán en el mes de Febrero de un año bisiesto en el que además el día 1 es viernes? Desde que cruza la línea de fecha internacional de oeste a este y lo hace durante un viernes, contará dos viernes todas las semanas, sumando así 10 viernes en todo el mes. Al contrario, el capitán de una nave que deja Alaska todos los jueves y se dirige hacia Siberia perderá los viernes en sus cálculos, con el resultado de que no tendrá un solo viernes en todo el mes. Así que la respuesta correcta es que el mayor número de posibles viernes en el mes de Febrero es de 10, y el menor es de ninguno. Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 1 Capítulo Segundo LA LUNA Y SUS MOVIMIENTOS Contenido ¿Cuarto creciente o cuarto menguante? La Luna en las banderas Los enigmas de las fases de la Luna Planeta doble Por qué la Luna no cae sobre el Sol El lado visible y el lado invisible de la Luna La segunda Luna y la Luna de la Luna Por qué la Luna no tiene atmósfera Las dimensiones del mundo lunar Paisajes lunares El cielo de la Luna Para qué observan los astrónomos los eclipses Por qué los eclipses se repiten cada 18 años ¿Es posible? Lo que no todos saben acerca de los eclipses ¿Cuál es el clima de la Luna? * * * ¿Cuarto creciente o cuarto menguante? Pocos son los que viendo en el cielo el disco incompleto de la Luna pueden decir sin equivocarse si la Luna está en creciente o en menguante. La fina hoz de la Luna nacida de unos días y la hoz de la "Luna vieja" se distinguen solamente porque tienen la convexidad dirigida en sentido contrario. En el hemisferio Norte la Luna creciente está siempre con la convexidad dirigida hacia la derecha y la menguante hacia la izquierda. ¿Cómo recordar fácilmente y sin error hacia dónde mira cada Luna? En ruso, en francés y en otras lenguas existen diferentes artificios mnemotécnicos que se basan en el parecido de la hoz o de la media luna con letras -P y C, p y d- iniciales de palabras que claramente indican si la Luna está en cuarto creciente o en cuarto menguante (figura 30). Para los que en el hemisferio Norte hablan español, las hoces de la Luna pueden representar una C o una D, iniciales de creciente y de decreciente. Ahora bien, nosotros hemos de tomar estas letras con significado contrario, es decir, que cuando la Luna tiene la forma de C, inicial de creciente; está en menguante; y cuando tiene la forma de una D, inicial de decreciente, está en creciente. (También podemos servirnos al efecto del conocido dicho: "Luna creciente, cuernos a Oriente".) Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 2 Figura 30. Procedimiento sencillo para distinguir el cuarto creciente del cuarto menguante en el hemisferio Norte En el hemisferio Sur, en cambio, la correspondencia entre las iniciales C y D y el cuarto de la Luna es perfecta, pues el observador de ese hemisferio ve siempre a nuestro satélite en posición invertida con respecto al observador del hemisferio Norte. Por otra parte, todos estos signos mnemotécnicos vienen a resultar inaplicables en las latitudes muy bajas. Ya en Crimea y en Transcaucasia la hoz y la media luna se inclinan fuertemente hacia un lado, y más al Sur aún, están completamente acostadas. Cerca del Ecuador, la hoz de la Luna, colgada sobre el horizonte, parece una góndola columpiándose sobre las olas (la "barca de la Luna" de los cuentos árabes) o un arco brillante. Aquí no sirven signos de ninguna clase; con el arco acostado se puede formar indiferentemente una y otra letra: C y D, p y d. No en vano en la antigua Roma llamaban "engañosa" (Luna fallax) a la Luna inclinada. Para no equivocarse tampoco en este caso en la fase de la Luna, es necesario valerse de signos astronómicos: la Luna creciente es visible de noche en la parte occidental del cielo; la Luna menguante se ve de mañana en la parte oriental del cielo. Volver La Luna en las banderas Problema En la figura 31 vemos la antigua bandera de Turquía. En ella están representadas la hoz de la Luna y una estrella. Esto nos sugiere los siguientes problemas: 1. ¿La hoz de qué Luna está representada en la bandera de la creciente o de la menguante? 2. ¿Pueden observarse la hoz de la Luna y la estrella en el cielo según aparecen representadas en la bandera? Solución 1. Recordando los signos mnemotécnicos antes indicados y teniendo en cuenta que la bandera pertenece a un país del hemisferio Norte, podemos decir que la Luna de la bandera es menguante. Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 5 semicircular; el arco interior es una semielipse, porque es un semicírculo (límite de la parte iluminada) visto en perspectiva (figura 34 a). No es fácil tampoco dar a la hoz de la Luna una posición correcta en el cielo. Es frecuente situar la media luna y la hoz de la Luna en forma bastante discordante con relación al Sol. Parece que, como la Luna es iluminada por el Sol, la línea recta une los extremos de la Luna debería formar un ángulo recto con el rayo que va del Sol a su punto medio (figura 35 ). En otras palabras, el centro del Sol debe encontrarse en la perpendicular trazada por el punto medio de la recta que une los extremos de la Luna. Sin embargo, esto es correcto sólo para una hoz estrecha. Figura 35. Posición de la hoz de la Luna con respecto al Sol En la figura 36 se muestran las posiciones de la Luna en distintas fases con relación a los rayos del Sol. Da la impresión de que los rayos del Sol se curvan antes de alcanzar a la Luna. Figura 36. Posiciones con respecto al Sol en que vemos la Luna en sus distintas fases La clave del enigma se reduce a lo siguiente: el rayo que va del Sol a la Luna es en realidad perpendicular a la línea que une los extremos de la Luna y constituye en el espacio una línea recta. Pero nuestro ojo dibuja en el cielo, no esta recta, sino su proyección en la bóveda celeste cóncava, es decir, una línea curva. He ahí por qué nos parece que la Luna está "incorrectamente colgada" en el cielo. El artista debe aprender estas particularidades y saber trasladarlas a la tela. Volver Planeta doble La Tierra y la Luna forman un planeta doble. Tienen derecho a esta denominación porque nuestro satélite se distingue de los satélites de los demás planetas por su magnitud y por su masa, notables con relación a su planeta central. En el sistema solar existen satélites más grandes y más pesados en valor absoluto, pero, en comparación con su planeta central, lo son mucho menos que nuestra Luna con relación a la Tierra. En efecto, el diámetro de nuestra Luna es mayor que un cuarto del terrestre, mientras que el diámetro del más grande de los satélites de otros planetas es sólo la décima parte del diámetro de su planeta. (Tritón, satélite de Neptuno.) Además, la masa de la Luna Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 6 constituye 1/81 de la masa de la Tierra, en tanto que el más pesado de los satélites que se encuentran en el sistema solar, el satélite III de Júpiter, tiene menos de una diezmilésima parte de la masa de su planeta central. La tabla siguiente muestra la proporción de la masa de los grandes satélites con respecto a su planeta central. Planeta Satélite Masa (en proporción a la masa del planeta) Tierra Júpiter Saturno Urano Neptuno Luna Ganímedes Titán Titania Tritón 0.01230 0.00008 0.00021 0.00003 0.00129 De la comparación resulta que nuestra Luna, por su masa, tiene la proporción más elevada con respecto a su planeta central. Lo que en tercer lugar da al sistema Tierra-Luna derecho a pretender la denominación de planeta doble, es la gran proximidad de ambos cuerpos celestes. Muchos satélites de otros planetas giran a distancias mucho mayores: algunos satélites de Júpiter (por ejemplo, el noveno, figura 37) giran 65 veces más lejos. Figura 37. El sistema Tierra-Luna comparado con el sistema de Júpiter. (Las dimensiones de los cuerpos celestes están indicadas sin guardar escala) A esto se debe el hecho interesante de que la trayectoria descrita por la Luna alrededor del Sol sea muy poco distinta de la que sigue la Tierra. Esto puede parecer inverosímil, si se recuerda que la Luna se mueve alrededor de la Tierra a una distancia de casi 400 000 km. No olvidemos, sin embargo, que mientras la Luna da una vuelta alrededor de la Tierra, la Tierra misma ha tenido tiempo de trasladarse con ella aproximadamente 1/13 de su trayecto anual, es decir, 70.000.000 de kilómetros. Figura 38. El recorrido mensual de la Luna (línea continua) y de la Tierra (punteada) alrededor del Sol Imagínese la trayectoria circular de la Luna, 2.500.000 kilómetros, extendida a lo largo de una distancia 30 veces mayor. ¿Qué queda de su forma singular? Nada. He aquí por qué el camino de la Luna alrededor del Sol casi se confunde con la órbita de la Tierra, de la que Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 7 sólo diverge por 13 convexidades apenas observables. Se puede demostrar con un cálculo sencillo (que no hacemos aquí para no recargar la exposición) que esta trayectoria de la Luna tiene dirigida hacia el Sol su, concavidad. Se podría decir que, a grandes rasgos, se parece a un polígono de trece lados con ángulos ligeramente redondeados. En la figura 38 se ve una representación precisa de las trayectorias de la Tierra y de la Luna a lo largo de un mes. La línea punteada es la trayectoria de la Tierra, y la línea continua, la de la Luna. Están tan cerca una de otra, que para representarlas separadas fue necesario hacer un dibujo a una escala muy grande: el diámetro de la órbita de la Tierra es en él igual a 1/2 m. Si se tomara un diámetro de 10 cm, la mayor separación en el dibujo entre ambas trayectorias sería entonces menor que cl espesor de la línea que las representa. Observando este dibujo, uno se convence de que la Tierra y la Luna se mueven alrededor del Sol casi en la misma trayectoria y de que la denominación de "planeta doble" que les otorgaron los astrónomos es totalmente legitima.1 Volver Por qué la luna no cae sobre el sol La pregunta puede parecer ingenua. ¿En virtud de qué habría de caer la Luna sobre el Sol? Pues si la Tierra la atrae más fuertemente que el lejano Sol, la obliga, naturalmente, a girar alrededor de ella. Los lectores que piensan así se sorprenderán al saber que ocurre precisamente lo contrario: la Luna es atraída con más fuerza por el Sol que por la Tierra. Que esto es así lo demuestra el cálculo. Comparemos las fuerzas de atracción que sobre la Luna ejercen el Sol y la Tierra. Ambas fuerzas dependen de dos factores: de la magnitud de la masa que atrae y de la distancia de esta masa a la Luna. La masa del Sol es 330 000 veces mayor que la masa de la Tierra, y con tantas veces más fuerza que la Tierra atraería a la Luna si la distancia de la Luna fuera para ambos la misma. Pero el Sol se encuentra aproximadamente 400 veces más lejos de la Luna que la Tierra. La fuerza de atracción disminuye proporcionalmente al cuadrado de la distancia; por esto, la atracción del Sol debe disminuir en 4002, es decir, en 160 000 veces. Lo cual significa que la atracción del Sol es mayor que la terrestre en 000.160 000.330 es decir, en poco más de dos veces. La Luna, pues, es atraída por el Sol con una fuerza dos veces mayor que por la Tierra. ¿Por qué entonces la Luna no se precipita sobre el Sol? ¿Por qué la Tierra obliga a la Luna a girar alrededor de ella y no predomina la acción del Sol? La Luna no cae en el Sol por la misma razón por la cual no cae en él la Tierra. La Luna gira alrededor del Sol junto con la Tierra, y la acción gravitacional del Sol se consume toda en llevar constantemente a ambos cuerpos de una trayectoria recta a una órbita circular, es decir, en transformar el movimiento lineal recto en lineal curvo. Basta echar una mirada a la figura 38 para convencerse de lo dicho. Quizás a algunos lectores les quede alguna duda, ¿Como sucede esto? La Tierra atrae a la Luna y el Sol atrae a la Luna con fuerza mayor, pero la Luna, en vez de caer en el Sol, gira alrededor de la Tierra. Esto sería efectivamente extraño si el Sol atrajera solamente a la 1 Mirando atentamente el dibujo, se puede observar que el movimiento de la Luna representado en él no es exactamente uniforme. Así es en la realidad. La Luna se mueve alrededor de la Tierra por una elipse en uno de cuyos focos se encuentra la Tierra, y por esta razón, de acuerdo con la segunda ley de Kepler, en las partes próximas a la Tierra se mueve más rápidamente que en las partes alejadas. La excentricidad de la órbita de la Luna es bastante elevada: 0.055. Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 10 franja brillaría como si fuera de plata). Surge un difícil problema: encontrar dos fases iguales de la Luna con una diferencia de libración (en longitud) tan pequeña, que el borde del círculo iluminado pase por los mismos puntos de la superficie lunar. Pero tampoco esto es suficiente; en ambas posiciones debe ser además igual la libración en latitud2. Ya ve usted lo difícil que es obtener buenas estereofotografías de la Luna, y no se sorprenda al saber que a menudo una fotografía de un par estereoscópico se hace unos años después de la otra. Nuestros lectores quizá no piensen hacer estereofotografías de la Luna. El procedimiento para obtenerlas está explicado aquí, naturalmente, no con una finalidad práctica, sino sólo para mostrar a propósito de él las particularidades del movimiento de la Luna que dan a los astrónomos la posibilidad de ver una franja no muy grande del lado de nuestro satélite normalmente invisible. Gracias a ambas libraciones de la Luna, vemos en total, no la mitad de su superficie, sino el 59% de ella. Completamente inaccesible a nuestra vista queda el 41%. Cómo está constituida esta parte de la superficie de la Luna, nadie lo sabe; a lo sumo puede suponerse que no es esencialmente distinta de la parte visible 3. Se han hecho ingeniosos ensayos, prolongando hacia atrás las cordilleras y las franjas iluminadas de la Luna que salen de la parte invisible a la parte visible, para bosquejar, con carácter de conjeturas, algunos detalles de la mitad que nos es inaccesible. Probar semejantes conjeturas, por ahora, es imposible. Decimos por ahora, y no sin fundamento, pues hace tiempo ya que se estudian procedimientos para volar alrededor de la Luna en algún aparato que sea capaz de superar la atracción de la Tierra y desplazarse en el espacio interplanetario (ver mi libro Viajes interplanetarios). De la realización de esta audaz empresa ya no estamos muy lejos. Por el momento se sabe una cosa: la existencia tantas veces planteada de atmósfera y agua en el lado invisible de la Luna carece totalmente de fundamento y contradice las leyes de la física; si no hay atmósfera y agua en un lado de la Luna, no puede haberlas tampoco en el otro lado. Sobre este problema aún volveremos. Volver La segunda Luna y la Luna de la Luna En la prensa aparecen de vez en cuando informaciones de que un observador u otro consiguió ver un segundo satélite de la Tierra, su segunda Luna. Aunque semejantes noticias nunca han tenido confirmación, es interesante, sin embargo, detenerse en este tema. El problema de la existencia de un segundo satélite de la Tierra no es nuevo. Tiene tras sí una larga historia. Quien haya leído la novela de Julio Verne Alrededor de la Luna, recordará seguramente que en ella ya se menciona la segunda Luna. Es una Luna tan pequeña y su velocidad es tan grande, que los habitantes de la Tierra no pueden observarla. El astrónomo francés Petit, dice Julio Verne, sospechó su existencia y fijó su período de revolución alrededor de la Tierra en 3 horas 20 minutos. Su distancia a la superficie de la Tierra es igual a 8.140 km. Es interesante señalar que la revista inglesa Science, en un artículo sobre la astronomía de Julio Verne, considera esta referencia a la segunda Luna y al mismo Petit como una invención. En realidad, en ninguna enciclopedia se menciona a este astrónomo. Y, sin embargo, la información del novelista no es inventada. El director del observatorio de Tolosa, Petit, alrededor del año 50 del siglo pasado, sostuvo en efecto la existencia de una segunda Luna, meteorito con un período de revolución de 3 horas 30 minutos, que se movía no a 8.000, sino a 5.000 km de la superficie de la Tierra. Esta opinión, compartida entonces sólo por unos pocos astrónomos, fue después totalmente olvidada. Teóricamente, en la admisión de la existencia de un segundo satélite de la Tierra muy pequeño no hay nada anticientífico. Pero un cuerpo celeste semejante debería observarse, y 2 Para obtener fotografías estereoscópicas basta que la Luna presente un giro de 1°. (Más detalles de esto se pueden ver en mi Física recreativa.) 3 Conviene recordar que este libro fue escrito mucho antes de que fueran lanzados los cohetes lunares soviéticos, uno de los cuales fotografió la cara desconocida de la Luna. (N. R.) Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 11 no sólo en los raros momentos en que pasara (de manera aparente) por el disco de la Luna o del Sol. Incluso si girará tan cerca de la Tierra que debiera en cada vuelta sumergirse en la ancha sombra de nuestro planeta, también en este caso sería posible verlo en el cielo matutino y vespertino como una estrella brillante, por efecto de los rayas del Sol. El rápido movimiento y la frecuente aparición de esta estrella llamarían la atención de muchos observadores. En los momentos de eclipse total de Sol, la segunda Luna tampoco escaparía a la observación de los astrónomos. Resumiendo: si la Tierra en realidad poseyera un segundo satélite, se le podría observar bastante a menudo. Sin embargo, observación fidedigna no ha habido ninguna. Junto con el problema de la segunda Luna, se plantea también el problema de si nuestra Luna no tiene a su vez su pequeño satélite, la "Luna de la Luna". Pero asegurarse directamente de la existencia de semejante satélite de la Luna es muy difícil. El astrónomo Malton dice sobre esto lo siguiente: "Cuando la Luna brilla al máximo, su luz o la luz del Sol no permiten distinguir un cuerpo muy pequeño en su vecindad. Sólo en los eclipses de Luna el satélite de ésta podría ser iluminado por el Sol, ya que entonces las partes cercanas del cielo estarían libres de la influencia de la luz difusa de la Luna. Así, pues, sólo durante los eclipses lunares sería posible esperar descubrir un cuerpo pequeño que girara alrededor de la Luna. Tales investigaciones ya se han efectuado, pero no han dado resultados positivos." Volver Por que la luna no tiene atmósfera Este problema es de esos que se aclaran mejor si primeramente se les invierte. Antes de hablar de por qué la Luna no tiene a su alrededor una atmósfera, planteémonos esta pregunta: ¿por qué se mantiene la atmósfera alrededor de nuestro propio planeta? Recordemos que el aire, como todo gas, está constituido por un caos de moléculas libres que se mueven impetuosamente en distintas direcciones. Su velocidad media, a 0°, es de cerca de ½ km por segundo (la velocidad inicial de una bala de fusil). ¿Por qué no se dispersan esas moléculas en el espacio? Por la misma razón por la cual tampoco se escapa al espacio una bala de fusil. Habiendo agotado la energía de su movimiento en vencer la fuerza de la gravedad, las moléculas caen de nuevo hacia la Tierra. Imagínese el lector una molécula que cerca de la superficie terrestre vuele verticalmente hacia arriba con una velocidad de ½ km por segundo. ¿Hasta qué altura puede llegar? Es fácil calcularlo; la velocidad v, la altura h del ascenso v la aceleración g de la fuerza de la gravedad, están relacionadas por la fórmula siguiente: v2 = 2gh Sustituyamos v por su valor 500 m/s, y g por -10 m/s2; tenemos 250 000 = 20 h, de donde h = 12.500 m = 12½ km. Pero si las moléculas de aire no pueden volar más alto de 12½ km, ¿cómo puede haber moléculas de aire a una altura mayor? El oxigeno que entra en la composición de nuestra atmósfera se forma cerca de la superficie terrestre (del gas carbónico, gracias a la actividad de las plantas). ¿Qué fuerza lo eleva y Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 12 mantiene a una altura de 500 y más kilómetros, donde ha sido comprobada en forma indudable la presencia de trazas de aire? La física nos da aquí la misma respuesta que nos daría la estadística si le preguntáramos : "La duración media de la vida humana es de 40 años, ¿cómo, pues, hay personas de 80 años?" Todo se reduce a que el cálculo efectuado por nosotros se refiere a una molécula promedio y no a una molécula real. La molécula promedio posee una velocidad de ½ km por segundo, pero las moléculas reales se mueven unas más lentamente y otras más rápidamente que la molécula promedio. Es cierto que el porcentaje de moléculas cuya velocidad se aparta visiblemente de la promedio no es muy grande y que disminuye rápidamente con el crecimiento de la magnitud de esta desviación. De las moléculas contenidas en un volumen dado de oxígeno a 0°, sólo el 20% posee una velocidad de 400 a 500 m/s. Aproximadamente, otras tantas moléculas se mueven con la velocidad de 300 a 400 m/s, un 17% con una velocidad de 200 a 300 m/s, un 9% con la velocidad de 600 a 700 m/s, un 8% con la velocidad de 700 a 800 m/s y un 1 % con la velocidad de 1 300 a 1 400 m/s. Una pequeña parte (menos de una millonésima) de las moléculas tiene una velocidad de 3.500 m/s, y esta velocidad es suficiente para que las moléculas puedan alcanzar una altura de 600 km. En efecto, 3 5002 = 20 h de donde 500.612 20 000.250.12 ==h es decir, más de 600 km. Resulta así comprensible la presencia de trazas de oxígeno a cientos de kilómetros de altura de la superficie terrestre, pues, como vemos, es consecuencia de las propiedades físicas de los gases. Las moléculas de oxígeno, de nitrógeno, de vapor de agua, de gas carbónico, no poseen, sin embargo, velocidades que les permitan escapar definitivamente de la esfera terrestre. Para eso sería necesaria una velocidad no menor de 11 km por segundo, y semejantes velocidades, a temperaturas bajas, las poseen solamente algunas moléculas aisladas de los gases mencionados. He ahí por qué la Tierra mantiene tan firmemente su envoltura atmosférica. Se ha calculado que para perder la mitad de la provisión del más liviano de los gases de la atmósfera terrestre, el hidrógeno, debería pasar un número de años que se expresaría con 25 cifras. En millones de años no se manifiesta ningún cambio en la composición ni en la masa de la atmósfera terrestre. Para explicar ahora por qué la Luna no puede mantener a su alrededor una atmósfera semejante, no hay mucho que decir. La fuerza de atracción de la Luna es seis veces más débil que la de la Tierra; de modo que la velocidad necesaria para superar en la Luna la fuerza gravitacional es también menor, e igual tan sólo a 2360 m/s. Y como la velocidad de las moléculas de oxígeno y de nitrógeno a temperaturas moderadas puede superar esta velocidad, es claro que la Luna debería perder continuamente su atmósfera, si en ella se formara. Cuando se volatilizaran las moléculas más rápidas, otras moléculas alcanzarían la velocidad crítica (como consecuencia de la ley de distribución de las velocidades entre las partículas de un gas), y así estarían escapando continuamente al espacio nuevas y nuevas partículas de la envoltura atmosférica. Al cabo de un período de tiempo suficiente, sumamente pequeño a la escala del universo, toda la atmósfera abandonará la superficie de un cuerpo celeste que tenga tan poca fuerza de atracción. Se puede demostrar matemáticamente que si la velocidad media de las moléculas de la atmósfera de un planeta fuera incluso tres veces menor que la velocidad límite (es decir, si fuera para la Luna 2360:3 = 790 m/s), la mitad de la atmósfera debería dispersarse al cabo de unas pocas semanas. (La atmósfera de un cuerpo celeste sólo puede mantenerse Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 15 Figura 42. Montañas anulares frecuentes en la Luna En el telescopio el cráter aparece en relieve y escarpado, gracias a que las sombras lo hacen destacarse bien en la superficie lunar. Figura 43. Perfil de un gran cráter lunar Obsérvese, sin embargo, su perfil (figura 43) : se ve que, en comparación con el gigantesco diámetro del circo (60 km), la altura de la muralla y la del cono interior son muy pequeñas; la inclinación de las laderas disimula más aún su altura. Imagínese ahora que está usted paseando dentro de este circo y recuerde que su diámetro es igual a la distancia existente entre el lago Ladoga y el golfo de Finlandia. Apenas si notaría la forma anular de la muralla; la misma convexidad del suelo le escondería a usted su parte inferior, ya que el horizonte lunar es dos veces más reducido que el de la Tierra (en correspondencia con el diámetro de la Luna, 4 veces menor). Sobre la Tierra, un hombre de estatura mediana, de pie, en un lugar llano, puede ver en torno suyo no más de 5 km. Esto surge de la fórmula de la distancia del horizonte5: RhVD 2= en la que D es la distancia en km, h la altura de los ojos en kilómetros y R el radio del planeta en km. Sustituyendo estas letras por sus valores para la Tierra y para la Luna, resulta que, para un hombre de estatura mediana, la distancia del horizonte es en la Tierra.............4.8 km en la Luna...............2.5 km 5 Sobre el cálculo de la distancia del horizonte, ver en mi Geometría recreativa el capítulo "Donde el cielo y la tierra se juntan". Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 16 La figura 44 muestra qué panorama se ofrecería a un observador dentro de un circo lunar grande (se representa el paisaje de un gran circo, el de Arquímedes). Figura 44. Panorama que vería un observador colocado en el centro de un gran circo lunar. ¿No es cierto que esa vasta llanura con la cadena de colinas en el horizonte se parece poco a la imagen que uno se hace de un circo lunar? Mirándolo desde el otro lado de la muralla, desde fuera del circo, el observador también vería algo distinto de lo que espera. La ladera exterior de una montaña anular (ver la figura 43) se eleva tan suavemente, que al viajero no le parecería una montaña y no podría convencerse de que la cadena de colinas que él ve es una montaña anular que encierra una depresión circular. Para ello sería necesario que atravesara la cresta; pero, como ya hemos dicho, una vez dentro nada sorprendente se ofrecería a la vista del alpinista lunar. Además de esos gigantescos circos, en la Luna hay también un gran número de circos pequeños, los cuales se abarcan fácilmente con una mirada, incluso estando muy cerca de ellos. Pero su altura es muy pequeña; ante ellos el observador no experimentaría nada extraordinario. En cambio, las cordilleras montañosas de la Luna, que llevan las denominaciones de las montañas de la Tierra: Alpes, Cáucaso, Apeninos, etc., rivalizan por su altura con las terrestres y alcanzan de 7 a 8 km. En relación con la pequeña Luna, su altura es impresionante. La ausencia de atmósfera en la Luna y la nitidez de las sombras que de ello se deriva dan lugar en la observación telescópica a una interesante ilusión : las más pequeñas desigualdades del suelo se exageran y aparecen con un relieve desmesurado. Pongamos medio guisante con la convexidad hacia arriba. No es, por cierto, muy alto. Sin embargo, obsérvese la larga sombra que arroja (figura 45) . Figura 45. Medio guisante, arroja iluminado lateralmente, una sombra larga Con una iluminación lateral, en la Luna la sombra se hace 20 veces mayor que la altura del cuerpo que la arroja. Esto prestó a los astrónomos un gran servicio: gracias a la longitud de las sombras, es posible observar en la Luna, con el telescopio, objetos de una altura de 30 m. Pero la misma circunstancia nos hace exagerar las desigualdades del relieve lunar. La Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 17 montaña Pico, por ejemplo, aparece tan escarpada en el telescopio, que involuntariamente se la imagina uno en forma de una roca afilada y abrupta (figura 46). Figura 46. La montaña Pico aparece en el telescopio afilada y abrupta Así era representada antes. Pero observándola desde la superficie lunar, se vería en otra forma completamente distinta, tal cual se representa en la figura 47. Figura 47. A un observador situado en la superficie de la Luna, la montaña Pico le parecería de suaves pendientes En cambio, otras particularidades del relieve de la Luna son, a la inversa, subestimadas. Con el telescopio observamos en la superficie de la Luna grietas estrechas, apenas visibles, y nos parece que no pueden jugar un papel importante en el paisaje lunar. Pero transportados a la superficie de nuestro satélite, veríamos en tales sitios, a nuestros pies, un profundo precipicio negro que se extendería lejos; más allá del horizonte. Otro ejemplo: sobre la Luna está la llamada Muralla recta, escalón vertical que corta una de sus llanuras. Mirando esta muralla en el mapa (figura 48), olvidamos que tiene 300 m de altura; situados en las cercanías, nos sentiríamos deprimidos por su grandiosidad. Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 20 debe iluminar a la Luna con luz 90 veces más fuerte que la luz con que la Luna llena ilumina a la Tierra. En las "noches de claro de Tierra" en la Luna sería posible leer impresos en pequeños caracteres. La iluminación del suelo de la Luna por la Tierra es tan brillante, que nos permite distinguir a una distancia de 400 000 km la parte nocturna o no iluminada del globo lunar en forma de un confuso centelleo dentro de una hoz estrecha; este centelleo es lo que se llama "luz cenicienta" de la Luna. Imagínese usted 90 Lunas llenas arrojando desde el cielo su luz, tenga en cuenta además la ausencia de atmósfera en nuestro satélite, que absorbería parte de la luz, y podrá formarse así una idea del cuadro fantástico que han de ofrecer los paisajes lunares inundados en medio de la noche por el brillo de la "Tierra llena". ¿Podría un observador lunar distinguir en el disco de la Tierra los contornos de los continentes y de los océanos? Está bastante difundida una equivocada opinión, según la cual, la Tierra, en el cielo de la Luna, constituye algo parecido a la esfera terrestre de una escuela. Así la representan los artistas cuando tienen que dibujar la Tierra en el espacio; con los contornos de los continentes, con gorros de nieve en las regiones polares y otros detalles semejantes. Todo esto pertenece al terreno de la fantasía. En la esfera terrestre observada desde fuera no se pueden distinguir esos detalles. Sin hablar de las nubes, que habitualmente cubren la mitad de la superficie terrestre, la misma atmósfera dispersa fuertemente los rayos solares; por esta razón la Tierra debe aparecer tan brillante y tan inescrutable a la vista como Venus. El astrónomo de Pulkovo, G. A. Tijov, tras haber estudiado este problema, escribió: "Si miráramos a la Tierra desde el espacio, veríamos un disco de color blanco intenso en el cielo y apenas distinguiríamos algunos detalles de su superficie. Una inmensa parte de la luz que el Sol envía a la Tierra es dispersada en el espacio por la atmósfera y sus componentes antes de alcanzar la superficie de la Tierra. Y la luz que refleja la superficie misma se debilita fuertemente otra a vez a consecuencia de una nueva dispersión en la atmósfera." Así, pues, mientras que la Luna nos muestra en formó precisa todos los detalles de su superficie, la Tierra esconde su faz a la Luna y a todo el universo bajo el velo brillante de su atmósfera. Pero no sólo por esto se distingue el astro nocturno lunar del terrestre. En nuestro cielo, la Luna sale y se pone, recorre su camino junto con la bóveda estrellada. En el cielo de la Luna, la Tierra no realiza este movimiento. Allí la Tierra no sale ni se pone, ni toma parte en el armonioso y extraordinariamente lento cortejo de las estrellas. Pende en el cielo casi inmóvil, ocupando para cada punto de la Luna una posición definida, mientras las estrellas se deslizan lentamente detrás de ella. Esto es consecuencia de la particularidad ya examinada del movimiento de la Luna, según la cual, nuestro satélite dirige hacia la Tierra siempre la misma parte de su superficie. Para un observador lunar, la Tierra está colgada casi inmóvil de la cúpula del cielo. Si la Tierra está en el cenit de algún cráter lunar, no abandona nunca su posición Genital. Si desde algún punto es visible en el horizonte, eternamente se queda en el horizonte para este lugar. Solamente la libración de la Luna, sobre la cual hemos hablado, interrumpe algo esta inmovilidad. El cielo estrellado realiza detrás del disco de la Tierra su lenta rotación, en 27 1/3 de nuestros días. El Sol da una vuelta al cielo en 29½ días; los planetas ejecutan movimientos semejantes y sólo la Tierra está casi inmóvil en el cielo negro. Pero aunque permanece en un mismo sitio, la Tierra gira rápidamente alrededor de su eje en 24 horas y, si su atmósfera fuera transparente, nuestro planeta podría servir de cómodo reloj celeste a los futuros pasajeros de los navíos interplanetarios. Aparte esto, la Tierra escribe Tyndall en su libro sobre la luz. La capacidad del suelo lunar, de dispersar los rayos del Sol que lo iluminan es, por término medio, igual a la capacidad de dispersión de las rocas volcánicas oscuras. Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 21 tiene las mismas fases que la Luna muestra en nuestro cielo. Es decir, que nuestro mundo no siempre brilla en el cielo de la Luna como un disco entero; aparece también en forma de semicírculo, en forma de hoz más o menos estrecha, en forma de circulo incompleto, según la parte de la mitad de la Tierra iluminada por el Sol que está dirigida hacia la Luna. Dibujando las posiciones respectivas del Sol, la Tierra y la Luna, se convencerá fácilmente de que la Tierra y la Luna deberán mostrar, una a otra, fases opuestas. Figura 51. “Tierra nueva” en la Luna. El disco negro de la Tierra está rodeado de un borde brillante debido al fulgor de la atmósfera terrestre Cuando nosotros observamos la Luna nueva, el observador lunar debe ver el disco entero de la Tierra, "Tierra llena"; a la inversa, cuando nosotros tenemos Luna llena, en la Luna hay "Tierra nueva" (figura 51); cuando vemos la hoz afilada y estrecha del cuarto creciente, desde la Luna se podría admirar a la Tierra en cuarto menguante, y a nuestro astro le faltaría, para que el disco fuera completo, una hoz similar a la que en ese momento nos enseña la Luna. Las fases de la Tierra no tienen contornos tan precisos como las de la Luna la atmósfera terrestre hace borrosos los limites de la luz y da lugar a esa lenta transición del día a la noche, y viceversa, que nosotros observamos en la Tierra en forma de crepúsculo. Figura 52. La “Tierra creciente” en el cielo la Luna. El círculo blanco que está debajo de la Tierra, es el Sol Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 22 Otra diferencia entre las fases de la Luna y las de la Tierra es la siguiente. En la Tierra nunca vemos a la Luna en el momento mismo de aparecer la Luna nueva. A pesar de que habitualmente se encuentra en ese momento más alta o más baja que el Sol (a veces 5°, es decir, 10 diámetros lunares) de modo que un estrecho borde de la esfera lunar iluminado por el Sol podría verse, la Luna permanece, sin embargo, inaccesible a nuestra vista, pues el brillo del Sol ahoga el discreto brillo del hilo de plata de la Luna nueva. No observamos la Luna nueva habitualmente hasta que no tiene la edad de dos días, cuando ya se ha separado a suficiente distancia del Sol, y sólo en casos muy raros (en primavera) a la edad de un solo día. Esto no sucedería para quien observara la "Tierra nueva" desde la Luna; allá no hay atmósfera que disperse los rayos del Sol y cree alrededor del astro diurno una aureola brillante. Las estrellas y los planetas no se pierden allá en los rayos del Sol y pueden distinguirse bien en el cielo en su vecindad inmediata. Por esto, cuando la Tierra no se halle en línea recta frente al Sol (es decir, no en el momento de un eclipse), sino un poco más alta o más baja que él, será siempre visible en el cielo negro sembrado de estrellas de nuestro satélite, en forma de una hoz estrecha, con los cuernos dirigidos en dirección opuesta al Sol (figura 52). A medida que la Tierra se desplaza hacia la izquierda del Sol, la hoz parecerá girar hacia la izquierda. Fenómenos correspondientes a los aquí descritos pueden verse observando la Luna con un pequeño anteojo: en la Luna llena, el disco del astro nocturno no se ve en forma de círculo completo; como los centros de la Luna y del Sol no se encuentran en línea recta con los ojos del observador, en el disco de la Luna falta una hoz delgada que, como una franja oscura, se desliza hacia la izquierda cerca del borde del disco iluminado a medida que la Luna se mueve hacia la derecha. Pero la Tierra y la Luna siempre muestran una a otra fases opuestas, - y por esto, en el momento descrito, el observador lunar debería ver una estrecha hoz correspondiente a la "Tierra nueva". Figura 53. Lentos movimientos de la Tierra cerca del horizonte lunar a consecuencia de la libración. La linea punteada es la trayectoria del centro del disco terrestre Hemos apuntado ya, al pasar, que la libración de la Luna debe hacerse sentir en el hecho de que la Tierra no está totalmente inmóvil en el cielo de la Luna: nuestro planeta oscila, alrededor de una posición media, 14° en dirección Norte-Sur y 16° en dirección Oeste-Este. Por la misma razón, en los puntos de la Luna desde los cuales la Tierra es visible en el horizonte mismo, nuestro planeta debe parecer que se pone, y poco después sale nuevamente, describiendo extrañas curvas (figura 53). Estas originales salidas y puestas de la Tierra en un lugar del horizonte sin dar la vuelta alrededor del cielo pueden durar muchos días terrestres. Los eclipses en la Luna El cuadro recién esbozado del cielo lunar se completa con la descripción de esos espectaculares fenómenos celestes llamados eclipses. En la Luna hay dos clases de eclipses: Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 25 ¿Tiene sentido preparar expediciones tan costosas para realizar tan breves observaciones? ¿No seria posible realizar esas mismas observaciones sin esperar a la ocultación casual del Sol por la Luna? ¿Por qué los astrónomos no simulan artificialmente eclipses de Sol, ocultando en el telescopio su imagen con círculos que les permitan observar esa periferia solar que tanto les interesa durante los eclipses? Este eclipse solar artificial no permitiría alcanzar los resultados que se observan durante la ocultación real del Sol por la Luna. Porque los rayos del Sol, antes de llegar a nuestros ojos, pasan a través de la atmósfera terrestre y las partículas de aire los dispersan. A esto se debe que el cielo, durante el día se nos aparezca como una cúpula celeste clara y no negra y sembrada de estrellas, como lo veríamos, incluso de día, en ausencia de atmósfera. Ocultando al Sol con una pantalla y dejando en el fondo el océano aéreo, aunque protegeríamos nuestra vista de los rayos directos del astro diurno, la atmósfera continuarla como antes sobre nosotros, sumergida en la luz solar, y seguiría dispersando los rayos e imposibilitando la visión de las estrellas. Esto no sucede si la pantalla eclipsante se encuentra fuera de los limites de la atmósfera. La Luna es una pantalla de esta clase, por hallarse lejos de nosotros, mil veces más lejos que el limite de la atmósfera. Los rayos del Sol se detienen en esa pantalla antes de penetrar en la atmósfera terrestre y, en consecuencia, la dispersión de la luz en la zona de eclipse no se produce. En realidad, no es del todo así; en la zona de sombra penetran siempre algunos rayos dispersos por los territorios iluminados próximos, y ésta es la razón de que el cielo, en un eclipse total de Sol, nunca esté tan negro como en una noche cerrada. En esas circunstancias sólo son visibles las estrellas más brillantes. ¿Qué problemas se plantean los astrónomos en la observación del eclipse solar total? Señalemos los más importantes. El primero es la observación de la llamada "inversión" de las líneas espectrales en la envoltura exterior del Sol. Las líneas del espectro solar normalmente oscuras en la cinta clara del espectro, se vuelven claras sobre un fondo oscuro, durante algunos segundos, tan pronto se produce la total ocultación del Sol por el disco de la Luna: el espectro de absorción se transforma en un espectro de emisión. Figura 56. Durante los eclipses totales de Sol, alrededor del disco negro de la Luna aparece la “corona solar”. Es el llamado "espectro relámpago". Aunque este fenómeno, que proporciona valiosos datos para juzgar la naturaleza de la envoltura superficial del Sol, puede observarse en las condiciones señaladas no sólo en el momento de un eclipse, se manifiesta durante éste en forma tan nítida, que los astrónomos hacen todo lo posible para no perder semejante oportunidad. El segundo problema es la investigación de la corona solar. La corona es el más importante Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 26 de los fenómenos observables en un eclipse total de Sol: alrededor del círculo completamente negro de la Luna ribeteada con los salientes ígneos (protuberancias) de la superficie exterior del Sol, brilla una aureola perlada de diversos tamaños y formas en los distintos eclipses (figura 56). El largo de los rayos de esta aureola es con frecuencia varias veces mayor que el diámetro solar, y su brillo, normalmente, sólo la mitad del brillo de la Luna llena. Durante el eclipse de 1936 la corona solar apareció excepcionalmente brillante, más brillante que la Luna llena, lo cual sucede muy raras veces. Los rayos de la corona, largos, un poco borrosos, se extendían a tres y más diámetros solares; en conjunto, la corona tenía la forma de una estrella pentagonal cuyo centro ocupaba el disco oscuro de la Luna. La naturaleza de la corona solar no ha sido bien aclarada hasta la fecha. Durante los eclipses, los astrónomos fotografían la corona, miden su brillo, estudian su espectro. Todo esto ayuda a la investigación de su estructura física. El tercer problema, planteado en los últimos decenios, se refiere a la comprobación de una de las consecuencias de la teoría de la relatividad generalizada. De acuerdo con la teoría de la relatividad, los rayos de las estrellas que pasan cerca del Sol experimentan la influencia de su gigantesca atracción y sufren una desviación, que debe manifestarse en un desplazamiento aparente de las estrellas cercanas al disco solar (figura 57). La prueba de esta consecuencia es posible solamente durante un eclipse total de Sol. Las medidas efectuadas en los eclipses de 1919, 1922, 1926 y 1936 no dieron, en rigor, resultados decisivos, y el problema de la confirmación experimental de la consecuencia indicada de la teoría de la relatividad sigue todavía planteado7. Éstos son los principales objetivos por los que los astrónomos abandonan sus observatorios y se dirigen a lugares alejados, a veces inhóspitos, para observar los eclipses solares. En cuanto al espectáculo del eclipse total de Sol, en nuestra literatura hay una estupenda descripción de este raro fenómeno natural (V. G. Korolenko, El eclipse. La descripción se refiere al eclipse de agosto de 188?; la observación se efectuó a orillas del Volga, en la ciudad de Yuriévets.) Damos a continuación un extracto del relato de Korolenko, con algunas omisiones sin importancia: "El Sol se sumerge en un instante en una amplia mancha nebulosa y se muestra más allá de las nubes visiblemente reducido . . . "Ahora se puede mirar directamente, y ayuda a ello el fino vapor que por todas partes humea en el aire y suaviza el brillo cegador. "Silencio. En alguna parte se oye una respiración pesada, nerviosa . . . "Pasa media hora. El día brilla por doquier igual que antes; algunas nubecillas cubren y descubren el Sol, que boga ahora por el cielo en forma de hoz. "Entre los jóvenes reina una animación despreocupada, con una mezcla de curiosidad. "Los ancianos suspiran; las ancianas, como histéricas, se quejan a gritos, y algunas incluso gimen y lanzan alaridos como si les dolieran las muelas. "El día comienza a palidecer en forma ostensible. Los rostros toman un tinte de miedo; las sombras de las figuras humanas yacen en tierra pálidas, sin brillo. Un 7 El hecho mismo de la desviación se confirma, pero no se ha podido establecer un acuerdo cuantitativo total con la teoría. Las observaciones del profesor A. A. Mijailov condujeron a la necesidad de revisar en algunas partes la teoría misma de este fenómeno. (N. R.) Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 27 barco que se desliza por la corriente pasa como una aparición. Sus contornos se hacen vagos, sus colores se vuelven menos definidos. La cantidad de luz, al parecer, disminuye; pero como las sombras densas del atardecer están ausentes y no hay juego de luces reflejadas por las capas inferiores de la atmósfera, este crepúsculo resulta extraño y desacostumbrado. El paisaje parece desvanecerse; la hierba pierde su verdor y las montañas toman un aspecto irreal. "Sin embargo, aún se ve un estrecho borde brillante de Sol en forma de hoz, y se tiene la impresión de que el día, aunque muy apagado, continúa. Me parece que los relatos sobre la oscuridad que reina durante los eclipses son exagerados. '¿Es posible -me dije- que esta ínfima chispa de Sol que aún queda encendida, como una última vela olvidada, sea capaz de iluminar tanto este mundo inmenso?... ¿Acaso cuando ella se extinga va a caer bruscamente la noche? "Pero he aquí que la chispa desapareció. De pronto, como si se desprendiera con esfuerzo de un apretado abrazo, brilló como una gota de oro y se extinguió. Y entonces se esparcieron sobre la Tierra densas tinieblas. Capté el momento en que la oscuridad completa cayó sobre el crepúsculo. Apareció por el Sur y, como un velo gigantesco, pasó rápidamente, extendiéndose sobre las montañas, sobre los ríos, sobre las praderas, abarcando todo el espacio celeste; nos envolvió por todas partes y en un instante se cerró por el Norte. Yo estaba entonces abajo, en un banco de arena de la orilla, y observaba la muchedumbre. Reinaba un silencio sepulcral... Los hombres formaban una masa oscura... Pero ésta no era una noche como las demás. Había tan poca luz, que las miradas buscaban involuntariamente el brillo plateado de la Luna que invade la oscuridad azul de una noche normal. Pero por ninguna parte se veían rayos luminosos. Era como si una ceniza liviana, imperceptible para la vista, se desparramara desde lo alto sobre la Tierra, o como si una red de malla muy fina pendiera en el aire. Allá arriba, en las capas superiores de la atmósfera, se adivina un espacio luminoso que penetra en la oscuridad y funde las sombras, a las que priva de forma y densidad. Y por encima de toda una naturaleza asombrada por el milagroso panorama corren nubes que parecen entregarse a una lucha cautivante... Un cuerpo enemigo, redondo y oscuro como una araña, se agarró al Sol ardiente, y ambos corren juntos más allá de las nubes. Un cierto resplandor, que sale en forma de reflejos cambiantes de detrás del escudo de sombras, da movimiento y vida al espectáculo, y las nubes refuerzan aún más la ilusión con su silenciosa e inquieta carrera." Los eclipses de Luna no poseen para los astrónomos contemporáneos tanto interés como los eclipses de Sol. Nuestros antepasados veían en los eclipses de Luna un medio cómodo para convencerse de la forma esférica de la Tierra. Recordemos el papel que jugó esta prueba en el viaje de circunnavegación de Magallanes. Cuando después de largos y agotadores días de viaje por las desiertas aguas del océano Pacífico los marineros cayeron en la desesperación, convencidos de que se alejaban cada vez más de la tierra firme por un mar que no tenía fin, sólo Magallanes no perdió el coraje. "Aunque la Iglesia siempre sostuvo, basándose en las Sagradas Escrituras, que la Tierra es una planicie rodeada por agua -relata uno de los compañeros del gran navegante-, Magallanes extrajo fuerzas del siguiente razonamiento: en los eclipses de Luna la sombra arrojada por la Tierra es circular, y si tal es la sombra, tal debe ser el objeto que la arroja..." En los libros antiguos de astronomía encontramos también dibujos que explican la relación entre la forma de la sombra de la Luna y la forma de la Tierra (figura 58). Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 30 117 1 4 1 1 1 2 1 1 1 1 1 11 1 1 122.272 306.295 + + + + + + + += De esta fracción, tomando los primeros términos y despreciando los restantes, obtenemos las siguientes aproximaciones consecutivas 12 / 11, 13 / 12, 38 / 35, 51 /47, 242 /225, 1019 / 959, etc. El quinto quebrado de esta serie da ya suficiente precisión. Si nos detenemos en él, es decir, si se toman los valores x = 223 e y = 242, el período de repetición de los eclipses que se obtiene es igual a 223 días sinódicos o a 242 draconíticos. Esto constituye 3 6585 días, es decir, 18 años 11,3 días (o 10,3 días)8. Tal es el origen del saros. Sabiendo de donde procede, podemos dejar de lado el cálculo y predecir por medio de él, con bastante precisión, los eclipses. Vemos que, tomando el saros igual a 18 años 10 días, despreciamos 0.3 días. Esto debe tenerse en cuenta, pues el eclipse predicho con este período simplificado caerá a una hora del día diferente a la de la oportunidad anterior (aproximadamente 8 horas más tarde), y sólo utilizando un período exactamente igual al triple del saros, el eclipse se repetirá casi en el mismo momento del día. Aparte esto, el saros no tiene en cuenta los cambios de distancia de la Luna a la Tierra y de la Tierra al Sol, cambios que tienen su periodicidad; de estas distancias depende que el eclipse de Sol sea o no total. El saros, pues, nos da solamente la posibilidad de predecir qué día determinado ha de ocurrir un eclipse, pero sobre si será total, parcial o anular, o si podrá ser observado en los mismos lugares que la vez anterior, nada permite afirmar. Finalmente, sucede también que un eclipse parcial de Sol que es insignificante, 18 años después disminuye hasta cero, es decir, deja totalmente de observarse, y, a la inversa, a veces se hace visible un pequeño eclipse solar parcial que antes no era observable. En nuestros días los astrónomos no utilizan el saros. Los movimientos caprichosos del satélite de la Tierra están tan bien estudiados, que el eclipse se predice con una exactitud de segundos. Si la predicción de un eclipse no se cumpliera, los hombres de ciencia contemporáneos estarían dispuestos a admitir cualquier cosa antes que la falibilidad de sus cálculos. Esto fue muy bien señalado por Julio Verne, quien, en su novela El país de las pieles, nos hace el relato de un astrónomo que se dirigió al polo para la observación de un eclipse de Sol que, a pesar de haber sido previsto, no se produjo. ¿Qué conclusión sacó de esto el astrónomo? A sus acompañantes les dio la explicación de que la superficie helada en que se encontraban no era un continente, sino un campo de hielo flotante que había sido transportado por las corrientes marinas fuera de la zona del eclipse. Esta afirmación resultó ser exacta. He ahí un ejemplo de fe profunda en la ciencia. Volver ¿Es posible? 8 Según que entren en este período 4 ó 5 años bisiestos. Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 31 Testigos oculares refieren que durante un eclipse de Luna han podido observar sobre el horizonte, en un lado del cielo, el disco del Sol y, al mismo tiempo, en el otro lado, el disco de la Luna oscurecido. Este fenómeno fue observado también en 1936, en el elipse parcial de Luna del 4 de julio. Uno de mis lectores me escribió lo siguiente: "El 4 de julio, ya tarde, a las 20 horas y 31 minutos, salió la Luna, y a las 20 horas y 45 minutos se puso el Sol; en el momento de la salida de la Luna ocurrió el eclipse lunar, aunque la Luna y el Sol eran visibles al mismo tiempo sobre el horizonte. Esto me asombró mucho, porque los rayos de luz se propagan en línea recta." El espectáculo es en realidad enigmático: aunque, a pesar de la afirmación de la muchacha de Chejov, a través de un vidrio ahumado no se puede "ver la línea que une los centros del Sol y de la Luna", trazarla mentalmente al lado de la Tierra es absolutamente posible en esta disposición. ¿Puede producirse un eclipse si la Tierra no intercepta a la Luna y al Sol? ¿Puede creerse este testimonio de un testigo ocular? En realidad, en una observación semejante no hay nada de inverosímil. Que el Sol y la Luna en eclipse sean visibles en el cielo al mismo tiempo es un hecho que depende de la curvatura de los rayos de luz en la atmósfera terrestre. Gracias a esta curvatura, llamada "refracción atmosférica", cada astro nos parece estar algo más alto que su verdadera posición (figura 15). Cuando vemos al Sol o a la Luna cerca del horizonte, geométricamente se encuentran por debajo de él. Así, pues, no hay nada de imposible en que los discos del Sol y de la Luna en eclipse sean visibles sobre el horizonte al mismo tiempo. "Habitualmente escribe con motivo de esto Flammarionse citan los eclipses de 1666, 1668 y 1750, en los que esta rara particularidad apareció en su forma más visible. Sin embargo, no hay necesidad de remontarse tan lejos. El 15 de febrero de 1877, la Luna salió en París a las 5 horas y 29 minutos y el Sol se puso a las 5 horas y 39 minutos, cuando ya comenzaba un eclipse total. El 4 de diciembre de 1880 hubo un eclipse total de Luna en París; ese día la Luna salió a las 4 horas y el Sol se puso a las 4 horas y 2 minutos, y esto ocurrió casi en la mitad del eclipse, que se prolongó desde las 3 horas y 3 minutos hasta las 4 horas y 35 minutos. Si este hecho no se observa mucho más a menudo, es simplemente por falta de observadores. Para ver la Luna en eclipse total antes de la puesta del Sol o después de su salida, se necesita simplemente elegir en la Tierra un lugar tal que la Luna se encuentre sobre el horizonte hacia la mitad del eclipse." Volver Lo que no todos saben acerca de los eclipses Preguntas 1. ¿Cuánto pueden durar los eclipses de Sol? ¿Y cuánto los eclipses de Luna? 2. ¿Cuántos eclipses pueden producirse a lo largo de un año? 3. ¿Hay años sin eclipses de Sol? ¿Y sin eclipses de Luna? 4. ¿Desde qué lado avanza sobre el Sol el disco negro de la Luna durante el eclipse, desde la derecha o desde la izquierda? 5. ¿Por qué borde empieza el eclipse de Luna, por el derecho o por el izquierdo? 6. ¿Por qué las manchas de luz en la sombra del follaje tiene durante el eclipse de Sol forma de hoz? (figura 59). 7. ¿Qué diferencia hay entre la forma de la hoz del Sol durante un eclipse y la forma ordinaria de la hoz de la Luna? 8. ¿Por qué se mira el eclipse solar a través de un vidrio ahumado? Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 32 Respuestas 1. La mayor duración de la fase total de un eclipse de Sol es de 7½ minutos (en el Ecuador, en las latitudes altas es menor). Todas las fases del eclipse pueden abarcar hasta 4½ horas (en el Ecuador). La duración de todas las fases del eclipse de Luna alcanza hasta 4 horas; el tiempo de la ocultación total de la Luna no dura más de 1 hora y 50 minutos. 2. El número total de eclipses de Sol y de Luna a lo largo de un año no puede ser mayor de 7 ni menor de 2 (en el año 1935 se contaron 7 eclipses: 5 solares y 2 lunares). 3. No hay ningún año sin eclipses de Sol; anualmente se producen por lo menos 2 eclipses solares. Los años sin eclipses de Luna son bastante frecuentes; aproximadamente, uno cada 5 años. 4. En el hemisferio Norte de la Tierra el disco de la Luna se desplaza sobre el Sol de derecha a izquierda. El primer contacto de la Luna con el Sol debe esperarse por el lado derecho. En el hemisferio Sur, por el lado izquierdo (figura 60). Figura 60. Por qué para un observador en el hemisferio Norte de la Tierra, el disco de la Luna se desplaza durante el eclipse sobre el Sol desde la derecha y para un observador en el hemisferio Sur, desde la izquierda 5. En el hemisferio Norte la Luna entra en la sombra de la Tierra por su borde izquierdo; en el hemisferio Sur, por el derecho. 6. Las manchas de luz en la sombra del follaje no son otra cosa que imágenes del Sol. Durante el eclipse el gol tiene forma de hoz, y esa misma forma tienen que tener sus imágenes en la sombra del follaje (figura 59). Astronomía Recreativa Yakov Perelman Capítulo 2 Preparado por Patricio Barros Antonio Bravo 35 temperatura durante el eclipse resultó ser de –70 °C a –117 °C, es decir, de casi 200 °C, en un período de tiempo de, aproximadamente, 1½ a 2 horas. En la Tierra, en cambio, en condiciones similares, es decir, durante un eclipse solar, se registra un descenso de temperatura de 2°, a lo sumo de 3°. Esta diferencia debe atribuirse a la influencia de la atmósfera terrestre, que es relativamente transparente para los rayos visibles del Sol pero que retiene los rayos "caloríficos" invisibles que el suelo caliente irradia. El hecho de que la superficie de la Luna pierda tan rápidamente el calor acumulado muestra, al mismo tiempo, la baja capacidad calórica y la mala conductividad térmica del suelo de la Luna, de lo cual se desprende que, durante el calentamiento, nuestro satélite sólo puede acumular una pequeña reserva de calor. Volver Astronomía Recreativa Yakov Perelman Capítulo 3 Preparado por Patricio Barros Antonio Bravo 1 Capítulo Tercero LOS PLANETAS Contenido Planetas a la luz del Día Los símbolos de los planetas Algo que no se puede dibujar Por qué Mercurio no tiene atmósfera Las fases de Venus Las oposiciones ¿Planeta o Sol pequeño? La desaparición de los anillos de Saturno Anagramas astronómicos Un planeta situado más allá de Neptuno Los planetas enanos Nuestros vecinos más próximos Los acompañantes de Júpiter Los cielos ajenos * * * Planetas a la luz del Día ¿Es posible ver de día, a la luz del Sol, los planetas? Con el telescopio, desde luego: los astrónomos efectúan frecuentemente observaciones diurnas de los planetas, que pueden ver incluso con telescopios de potencia mediana, si bien es cierto que no en forma tan clara y provechosa como de noche. Con un telescopio que tenga un objetivo de 10 cm de diámetro es posible no sólo ver durante el día a Júpiter, sino de distinguir sus franjas características. La observación de Mercurio es precisamente más cómoda de día, cuando el planeta se encuentra alto sobre el horizonte; después de la puesta del Sol, Mercurio permanece visible en el cielo, pero tan bajo, que la atmósfera terrestre perturba grandemente la imagen telescópica. En condiciones favorables algunos planetas se pueden ver de día, a simple vista. En particular, es frecuente poder observar en el cielo diurno á Venus, el más brillante de los planetas, aunque, desde luego, en la época de su mayor brillo. Es bien conocido el relato de Arago sobre Napoleón I, quien, una vez, durante un desfile por las calles de París, se ofendió porque la multitud, sorprendida por la aparición de Venus al mediodía, prestó más atención a este planeta que a su imperial persona. Desde las calles de las grandes ciudades, durante las horas del día, Venus es con frecuencia más visible aún que desde los lugares abiertos: las casas altas ocultan el Sol y protegen así Astronomía Recreativa Yakov Perelman Capítulo 3 Preparado por Patricio Barros Antonio Bravo 2 los ojos del deslumbramiento de sus rayos directos. La visibilidad casual de Venus durante el día fue señalada también por escritores rusos. Así, un escritor de Novgorod dice que en el año 1331, de día, "se vio en los cielos una señal, una estrella que brillaba encima de la iglesia". Esta estrella (según las investigaciones de D. C. Sviatski y N. A. Biliev) era Venus. Las épocas más favorables para ver a Venus de día se repiten cada 8 años. Los observadores atentos del cielo seguramente han tenido oportunidad de ver de día, a simple vista, no sólo a Venus, sino también a Júpiter, e incluso a Mercurio. Es conveniente detenerse ahora en el problema del brillo comparativo de los planetas. Entre los no especializados surge a veces la duda: ¿Cuál de los planetas alcanza mayor brillo Venus, Júpiter o Marte? Naturalmente, si brillaran al mismo tiempo y se les pusiera uno al lado del otro, semejante problema no surgiría. Pero cuando se les ve en el cielo en distintos momentos, no es fácil decidir cuál de ellos es más brillante. He aquí cómo se distribuyen los planetas por orden de brillo:      ⇒      Sirio que brillante más vecesVarias Júpiter Marte Venus      ⇒    magnitud primera de estrellas que brillantes más pero Sirio que débiles Más Saturno Mercurio Ya volveremos sobre este tema en el capítulo siguiente, cuando abordemos el estudio del valor numérico del brillo de los cuerpos celestes. Volver Los símbolos de los planetas Para designar al Sol, la Luna y los planetas, los astrónomos contemporáneos utilizan signos de origen muy antiguo (figura 62). La forma de estos signos exige una explicación, salvo el signo de la Luna, naturalmente, que se comprende por sí mismo. El signo de Mercurio es la imagen simplificada del cetro del dios mitológico Mercurio, dueño protector de este planeta. Como signo de Venus sirve la imagen de un espejo de mano, emblema de la feminidad y de la belleza inherentes a la diosa Venus. Como símbolo de Marte, que era el dios de la guerra, se usa una lanza cubierta con un escudo, atributos del guerrero. El signo de Júpiter no es otra cosa que la inicial de la denominación griega dé Júpiter (Zeus), una Z manuscrita. El signo de Saturno, según lo interpretó Flammarion, es la representación deformada de la "guadaña del tiempo", atributo tradicional del dios del destino. Los signos enumerados hasta ahora se utilizan desde el siglo IX. El signo de Urano, ya se comprende, tiene un origen posterior: este planeta fue descubierto a fines del siglo XVIII. Su signo es un círculo con la letra H, que nos recuerda el nombre de Herschel, descubridor de Urano. El signo de Neptuno (descubierto en 1846) es un tributo a la mitología, el tridente del dios de los mares. El signo para el último planeta, Plutón, se comprende por sí mismo. A estos símbolos planetarios es necesario añadir el signo del planeta en que vivimos, y también, el signo del astro central de nuestro sistema, el Sol. Este último signo, el más antiguo, era utilizado ya por los egipcios hace varios milenios. Figura 62. Signos convencionales para el Sol, la Luna y los planetas Astronomía Recreativa Yakov Perelman Capítulo 3 Preparado por Patricio Barros Antonio Bravo 5 y un espesor de 1/250 mm, y se encontraría a 1 mm de la superficie de la avellana. Los 9 satélites quedarían distribuidos alrededor del planeta en una extensión de 21 m, en forma de granitos de 1/10 mm de diámetro, y aun de menos. El vacío que separa los planetas aumenta progresivamente cuando nos aproximamos a los confines del sistema. En nuestro modelo, Urano estarla separado 196 m del Sol; sería un guisante de 3 mm de diámetro, con 5 particulitas-satélites distribuidas a una distancia de 4 cm del granito central. A 300 m de la pelota central giraría lentamente en su órbita un planeta que hasta hace poco era considerado como el último en nuestro sistema: Neptuno, un guisante con dos satélites (Tritón y Nereida) situados a 5 y 70 cm de él. Más lejos aún gira un planeta no muy grande, Plutón, cuya distancia al Sol en nuestro modelo sería de 400 m y cuyo diámetro habría de ser, aproximadamente, la mitad del de la Tierra. Pero ni siquiera la órbita de este último planeta se podría contar como limite de nuestro sistema solar. Además de los planetas, pertenecen a él los cometas, muchos de los cuales se mueven en trayectorias cerradas alrededor del Sol. Entre estas "estrella con cabellera" (significado original de la palabra cometa) hay una serie cuyo período de revolución alcanza hasta 800 años. Son los cometas que aparecieron el año 372 antes de nuestra era y los años 1106, 1668, 1680, 1843, 1880, 1882 (dos cometas) y 1897. La trayectoria de cada uno de ellos se representaría en el modelo con una elipse alargada, cuyo extremo más próximo (perihelio) se encontraría, a lo sumo, a 12 mm del Sol y cuyo extremo alejado (afelio) a 1700 m, cuatro veces más lejos que Plutón. Si en las dimensiones del sistema solar consideramos los cometas, nuestro modelo crecería hasta 3½ km de diámetro y ocuparía una superficie de 9 km, para una magnitud de la Tierra, no se olvide, igual a una cabecita de alfiler. En estos 9 km2 haríamos este inventario: 1 pelota de croquet 2 avellanas 2 guisantes 2 cabecitas de alfiler 3 granitos pequeñísimos. La materia de los cometas, cualquiera que sea su número, no entra en el cálculo, pues su masa es tan pequeña que con razón fueron llamados la "nada visible". Así, pues, nuestro sistema planetario no se puede representar en un dibujo a una escala verdadera. Volver Por qué Mercurio no tiene atmósfera ¿Qué vinculación puede haber entre la presencia de atmósfera en un planeta y la duración de su rotación alrededor de su eje? Aparentemente, se diría que ninguna. Y, sin embargo, el ejemplo del planeta más próximo al Sol, Mercurio, puede convencernos de que en algunos casos esta relación existe. Por la intensidad que alcanza la gravedad en su superficie, Mercurio podría retener una atmósfera de una composición similar a la de la Tierra, aunque quizás no tan densa. La velocidad necesaria para superar totalmente la fuerza de la gravitación de Mercurio es igual, en su superficie, a 4900 m/s, y esta velocidad, a temperaturas no muy elevadas, no es alcanzada ni por las moléculas más veloces de nuestra atmósfera 1 Sin embargo, Mercurio está desprovisto de atmósfera. La causa de que así sea estriba en que Mercurio se mueve alrededor del Sol de modo semejante a como se mueve la luna 1 Ver el capítulo II, "Por qué la Luna no tiene atmósfera". Astronomía Recreativa Yakov Perelman Capítulo 3 Preparado por Patricio Barros Antonio Bravo 6 alrededor de la Tierra, es decir, presentando siempre la misma cara al astro central. El tiempo de una revolución por su órbita (88 días) es el mismo tiempo de una rotación alrededor de su eje. Por esto, en un lado, en el que está siempre dirigido hacia el Sol, Mercurio tiene un día permanente y un verano eterno; y en el otro lado, en el vuelto en dirección contraria al Sol, dominan, una noche ininterrumpida y un invierno sin pausa. Es fácil imaginarse el calor que tiene que reinar en la parte diurna del planeta. El Sol está allí 21 veces más cerca que en la Tierra y la fuerza abrasadora de los rayos deberá crecer en 2.5 x 25, es decir, en 6.25 veces. En el lado nocturno, por el contrario, adonde, en el transcurso de millones de años no llegó ni un rayo de Sol, tiene que reinar un frío cercano al del espacio sideral2 (alrededor de -264° C), ya que el calor del lado diurno no puede pasar a través del espesor del planeta. En el límite entre los lados diurno y nocturno, hay una franja de un ancho de 23 °, en la que, a consecuencia de la libración3 el Sol aparece de cuando en cuando. En condiciones climáticas tan fuera de lo común, ¿qué seria de la atmósfera del planeta? Evidentemente, en la mitad nocturna, bajo la influencia del intenso frío reinante, la atmósfera se condensaría en el estado líquido, y luego se solidificaría. A consecuencia del pronunciado descenso de la presión atmosférica, hacia esa parte se dirigiría la envoltura gaseosa del lado diurno del planeta que, a su vez, también se solidificaría. En resumen, toda la atmósfera debería juntarse en forma sólida en el lado nocturno del planeta, en la parte donde el Sol nunca penetra. De este modo, la ausencia de atmósfera en Mercurio aparece como una consecuencia inevitable de las leyes físicas. Con estos mismos razonamientos, según los cuales es imposible la existencia de atmósfera en Mercurio, debemos descifrar el enigma planteado más de una vez de si hay atmósfera en el lado no visible de la Luna. Se puede afirmar con seguridad que si no hay atmósfera en un lado de la Luna, no puede haberla tampoco en el lado opuesto. En este punto, la novela fantástica de Wells, Los primitivos habitantes de la Luna, se aparta de la verdad. El novelista supone que en la Luna hay aire, el cual, al cabo de la noche, de 14 días de duración, llega a condensarse y solidificarse, y luego, con la aparición del nuevo día, pasa al estado gaseoso y da lugar a una atmósfera. Sin embargo, nada semejante puede suceder. "Si, escribía en relación con esto el profesor O. D. Jvolson, en el lado oscuro de la Luna el aire se solidifica, entonces casi todo el aire debe irse del lado iluminado al oscuro y solidificarse allí también. Bajo la influencia de los rayos solares, el aire cálido debe transformarse en gas, el cual inmediatamente se dirigirá al lado oscuro, donde se solidificará... Debe producirse una permanente destilación de aire, y nunca y en ningún lado puede alcanzar una fluidez importante." Si para Mercurio y la Luna se puede considerar demostrada la ausencia de atmósfera, en cambio, para Venus, el segundo de los planetas de nuestro sistema a partir del Sol, la presencia de atmósfera es segura, sin que quepa duda alguna. Se ha determinado incluso que en la atmósfera de Venus, más precisamente, en su estratosfera, hay gran cantidad de gas carbónico, muchas veces más que en la atmósfera terrestre. Volver 2 Con la denominación convencional de "temperatura del espacio sideral" los físicos designan la temperatura que marcaría en el espacio un termómetro ennegrecido, protegido contra los rayos del Sol. Esta temperatura es un poco más alta que el cero absoluto (-273°) a consecuencia de la acción de calentamiento de la irradiación estelar. Ver el libro de Y. I. Perelman ¿Sabe usted física? 3 Sobre la libración, ver la sección "El lado visible y el lado invisible de la Luna", Capítulo Segundo. Para la libración de Mercurio en latitud, tiene valor la misma regla aproximada que rige para la Luna: Mercurio dirige constantemente la misma cara, no hacia el Sol, sino hacia el otro foco de su elipse, bastante alargada Astronomía Recreativa Yakov Perelman Capítulo 3 Preparado por Patricio Barros Antonio Bravo 7 Las fases de Venus El famoso matemático Gauss cuenta que una vez invitó a su madre a contemplar con un telescopio a Venus, que brillaba intensamente en el cielo de la tarde. El matemático pensaba dar una sorpresa a su madre, pues en el telescopio Venus se veía en forma de hoz. Sin embargo, él fue el único sorprendido. Mirando a través del ocular, la madre no mostró ninguna sorpresa a causa de la forma del planeta y sólo dijo que le extrañaba ver la hoz dirigida hacia el lado opuesto en el campo del telescopio... Gauss nunca había sospechado que su madre pudiera distinguir las fases de Venus, incluso a simple vista. Tal agudeza visual se encuentra muy raramente; por esto, hasta la invención de los catalejos, nadie sospechaba la existencia en Venus de fases semejantes a las de la Luna. Una particularidad de las fases de Venus es que el diámetro del planeta en las distintas fases es desigual: la delgada hoz tiene un diámetro mucho mayor que el disco entero (figura 64) . Figura 64. Las fases de Venus vistas en el telescopio. En las diferentes fases, Venus tiene distintos diámetros aparentes como consecuencia del cambio de su distancia a la Tierra. La causa de ello es el alejamiento mayor o menor de nosotros de este planeta en sus distintas fases. La distancia media de Venus al Sol es de 108 millones de km, y la de la Tierra es de 150 millones de km. Es fácil comprender que la distancia más corta entre ambos planetas será igual a la diferencia (150-108), es decir, 42 millones de km, y que la más grande será igual a la suma (150 -t- 108), es decir, a 258 millones de km. Por consiguiente, el alejamiento de Venus de nosotros cambia dentro de estos límites. En su posición más próxima a la Tierra, Venus dirige hacia nosotros su lado no iluminado, y por esto la más grande de sus fases nos es totalmente invisible. Al salir de esta posición de "Venus nuevo", el planeta toma un aspecto falciforme, el de una hoz cuyo diámetro es tanto menor cuanto más ancha es la hoz. Venus no alcanza su mayor brillo cuando es visible como un disco entero, ni tampoco cuando su diámetro es máximo, sino en una fase intermedia. El disco entero de Venus es visible con un ángulo visual de 10"; la hoz mayor, con un ángulo de 64". El planeta alcanza su mayor brillo treinta días después de "Venus nuevo", cuando su diámetro angular es de 40" y el ancho angular de la hoz de 10". Entonces brilla 13 veces más intensamente que Sirio, la más brillante de todas las estrellas del cielo. Volver Astronomía Recreativa Yakov Perelman Capítulo 3 Preparado por Patricio Barros Antonio Bravo 10 trata de un diagrama, sino de un simple dibujo: las relaciones entre las superficies de los círculos no dan una idea exacta de las relaciones entre los volúmenes de las esferas. Los volúmenes de las esferas se relacionan entre sí como los cubos de sus diámetros. Figura 66. Las dimensiones de Júpiter y de sus satélites (a la izquierda) en comparación con las de la Tierra (a lo largo del diámetro) y las de la Luna, Marte y Mercurio (a la derecha). Si el diámetro de Júpiter es 11 veces mayor que el diámetro de la Tierra, su volumen es 113 veces mayor, es decir, 1300 veces mayor. De acuerdo con esto, debe corregirse la impresión visual de la figura 66, y entonces podrían ser debidamente apreciadas las gigantescas dimensiones de Júpiter. En lo que se refiere a la potencia de Júpiter como centro de gravitación, resulta imponente, si se consideran las distancias a que giran alrededor de este planeta gigante sus lunas. He aquí una tabla de estas distancias Distancias De la Tierra a la Luna Del III satélite a Júpiter Del IV satélite de Júpiter Del IX satélite de Júpiter Kilómetros 380.000 1.070.000 1.900.000 24.000.000 Comparación 1 3 5 63 Se ve que el sistema de Júpiter tiene unas dimensiones 63 veces mayores que el sistema Tierra-Luna; tan extendida familia de satélites no la posee ningún otro planeta. No sin fundamento, pues, se compara a Júpiter con un Sol pequeño. Su masa es 3 veces mayor que la masa de todos los planetas restantes tomados en conjunto, y si de golpe desapareciera el Sol, su lugar podría ser ocupado por Júpiter, que mantendría a todos los planetas girando a su alrededor, si bien lentamente, como nuevo cuerpo central del sistema. Hay también rasgos de semejanza entre Júpiter y el Sol en cuanto a la estructura física. La densidad media de su materia es de 1.35 con relación al agua, próxima a la densidad del Sol (1.4) . Sin embargo, el fuerte aplastamiento de Júpiter hace suponer que posee un núcleo denso, rodeado de una gruesa capa de hielo y de una gigantesca atmósfera. No hace mucho tiempo, la comparación entre Júpiter y el Sol fue llevada más lejos; se supuso que este planeta no está cubierto por una corteza sólida y que apenas si acaba de Astronomía Recreativa Yakov Perelman Capítulo 3 Preparado por Patricio Barros Antonio Bravo 11 salir del estado de incandescencia. La idea que en la actualidad se tiene de Júpiter es precisamente la contraria: la medida directa de su temperatura mostró que es extremadamente baja: ¡140 centígrados por debajo de cero! Es cierto que se trata de la temperatura de las capas de nubes que nadan en la atmósfera de Júpiter. La baja temperatura de Júpiter hace difícil la explicación de sus particularidades físicas: las tormentas de su atmósfera, las franjas, las manchas, etc. Los astrónomos se encuentran ante una verdadera madeja de enigmas. No hace mucho, en la atmósfera de Júpiter (y también en la de su vecino Saturno) fue descubierta la presencia indudable de una gran cantidad de amoníaco y metano5. Volver La desaparición de los anillos de Saturno En el año 1921 se propagó un rumor sensacional: ¡Saturno había perdido sus anillos! Y no sólo esto: los fragmentos del anillo destruido volaban por el espacio sideral en dirección al Sol y en su camino caerían sobre la Tierra. Se indicaba incluso el día en que debía producirse el encuentro catastrófico... Figura 67. Posiciones chic ocupan los anillos de Saturno con relación al Sol durante una revolución de este planeta por su órbita (29 años). Esta historia puede servir de ejemplo característico de como se propagan las noticias falsas. El origen de este rumor sensacional es muy simple: en el año mencionado el triple anillo de Saturno dejó de ser visible durante un corto tiempo, "desapareció", según la expresión del calendario astronómico; se interpretó esta expresión literalmente, como una desaparición física, es decir, como una ruptura del anillo, y se adornó posteriormente el suceso con detalles que llegaban incluso a la catástrofe universal, hablándose de la caída de los fragmentos del, anillo en el Sol y de su inevitable encuentro con la Tierra. ¡A qué alboroto dio lugar la inocente información del calendario astronómico que anunciaba la desaparición óptica de los anillos de Saturno! Pero ¿cuál era la causa de esta desaparición? Los anillos de Saturno son muy delgados, su espesor mide sólo dos o tres decenas de kilómetros; en comparación con su ancho, tienen la delgadez de una hoja de papel. Por esto, cuando los anillos se colocan de perfil al Sol, sus superficies superiores e inferiores no son iluminadas, y los anillos se hacen invisibles. También resultan invisibles cuando se colocan de perfil al observador terrestre. Los anillos de Saturno presentan una inclinación de 27° respecto al plano de la órbita de la Tierra, pero a lo largo de una revolución (29 años) por su órbita, en dos puntos diametralmente opuestos, el planeta coloca los anillos de perfil al Sol y al observador 5 Aún más significativo es el contenido en metano de la atmósfera de los planetas más alejados, de Urano y, particularmente, de Neptuno. En el año 1944 fue descubierta una atmósfera de metano en Titán, el más grande de los satélites de Saturno. (N. R.) Astronomía Recreativa Yakov Perelman Capítulo 3 Preparado por Patricio Barros Antonio Bravo 12 terrestre (figura 67), y, en otros dos puntos situados a 90° de los primeros, los anillos, por el contrario, muestran al Sol y a la Tierra su mayor ancho, "se abren", al decir de los astrónomos. Volver Anagramas astronómicos La desaparición de los anillos de Saturno dejó en su día perplejo a Galileo, al que faltó muy poco para descubrir este rasgo particularmente notable del planeta, pero que no pudo llegar a hacerlo debido a la incomprensible desaparic ión de los anillos. Esta historia es muy interesante. En aquel tiempo era muy frecuente tratar de reservarse el derecho de primacía en cualquier descubrimiento sirviéndose de un original artificio. Cuando llegaba a descubrir algo que aún necesitaba de confirmación posterior, el hombre de ciencia, por temor a que otro se adelantara, recurría a la ayuda de anagramas (trasposiciones de letras): comunicaba sucintamente la esencia de su descubrimiento en forma de anagrama, cuyo verdadero sentido era conocido sólo por él mismo. Esto daba al hombre de ciencia la posibilidad, si no tenía tiempo de confirmar su descubrimiento, de poder demostrar su prioridad en el caso de que apareciera otro pretendiente. Cuando finalmente se convencía de la legitimidad del hallazgo original, descubría el secreto del anagrama. Observando con su imperfecto telescopio que Saturno tenía cerca algún cuerpo agregado, Galileo se apresuró a "patentar" este descubrimiento e hizo públicos el siguiente juego de letras Smaismrmielmepoetaleumibuvnenugttaviras Adivinar lo que se esconde tras estas letras es totalmente imposible. Naturalmente, se pueden ensayar todos los cambios de lugar de estas 39 letras y de este modo descifrar la frase que proponía Galileo; pero eso exigiría realizar un trabajo enorme. Quien conozca la teoría combinatoria puede calcular el número total de las distintas permutaciones (con repetición) posibles6. Son !2!2!3!3!5!2!2!4!4!5!3 !39 ×××××××××× Este número está formado aproximadamente por 35 cifras (recordemos que el número de segundos de un año ¡está formado sólo por 8 cifras!). Se ve claramente lo bien que Galileo se aseguró el secreto de su hallazgo. Un contemporáneo del sabio italiano, Kepler7, con paciencia incomparable, dedicó muchos esfuerzos a descubrir el sentido oculto de la comunicación de Galileo, y creyó haberlo logrado cuando con las letras publicadas, despreciando dos, formó esta frase en latín Salve, umbistineum geminatum Martia proles (Os saludo, hijos gemelos de Marte) 6 Quizá no lo hizo público, sino que lo envió por carta a Kepler, detalle interesante por lo que sigue. (Nota de la Editorial soviética.) 7 Es evidente que Kepler utilizó para esto la suposición de una progresión en el número de los satélites de los planetas; pensando que la Tierra tenía un satélite y que Júpiter tenía 4, creyó natural la existencia de dos satélites en el planeta intermedio, Marte. Un razonamiento similar llevó también a otros pensadores a sospechar la presencia de dos satélites en Marte. En la fantasía astronómica Micromegas, de Voltaire (1750), encontramos una alusión a esto, pues el viajero imaginario, al acercarse a Marte, vio "dos lunas tributarias de este planeta hasta entonces escondidas a la mirada de nuestros astrónomos". En los Viajes de Gulliver, escritos años antes por Swift (1720), se tiene algo parecido: los astrónomos de Lupata "descubrieron dos satélites que giran alrededor de Marte". Estos interesantes hallazgos tuvieron plena confirmación solamente en 1877, cuando Hall descubrió la existencia de los dos satélites de Marte con ayuda de un potente telescopio. Astronomía Recreativa Yakov Perelman Capítulo 3 Preparado por Patricio Barros Antonio Bravo 15 extraordinariamente alargadas (su excentricidad es igual a 0.66), y muy inclinada respecto al plano de la órbita terrestre, con la que forma un ángulo de 43°. Observemos de paso que el nombre dado a este planeta lo fue en honor de Hidalgo y Costilla, glorioso héroe de las luchas de Méjico por su independencia, muerto en el año 1811. Todavía se ensanchó más la zona de los planetas menores en el año 1936, cuando fue descubierto un asteroide con una excentricidad de 0.78. El nuevo miembro de nuestro sistema solar recibió la denominación de Adonis. Una particularidad de este nuevo planeta menor es que, en el punto más alejado de su camino, se separa del Sol casi a la distancia de Júpiter y, en su punto más próximo, pasa cerca de la órbita de Mercurio. Finalmente, en 1949 fue descubierto el planeta menor Ícaro, que tiene una órbita excepcional. Su excentricidad es igual a 0.83; su máximo alejamiento del Sol es dos veces mayor que el radio de la órbita terrestre, y el mínimo, alrededor de un quinto de la distancia de la Tierra al Sol. Ninguno de los planetas conocidos se acerca tanto al Sol como Ícaro. El sistema de registro de los planetas recién descubiertos no está desprovisto de interés general, puesto que puede ser aplicado con éxito para fines no astronómicos. Primeramente se escribe el año del descubrimiento del planeta, y después la letra que señala la mitad del mes de la fecha de su descubrimiento (el año está dividido en 24 medios meses, que se indican con las sucesivas letras del alfabeto). Como en el transcurso de medio mes se descubren frecuentemente varios planetas menores, se señalan con una segunda letra, por orden alfabético. Si las segundas letras no bastan, se les agregan números al lado. Por ejemplo 1932 EA1, es el asteroide núm. 25, descubierto en el año 1932, en la primera mitad de marzo. Tras el cálculo de la órbita del planeta recién descubierto, éste recibe un número de orden y después un nombre. De la totalidad de los planetas menores, hasta ahora seguramente sólo una, pequeña parte es accesible a los instrumentos astronómicos; los restantes escapan a las redes de los cazadores. De acuerdo con los cálculos, el número de asteroides existentes en el sistema solar debe ser del orden de 40 a 50000. Hasta el momento el número de planetas enanos descubiertos por los astrónomos pasa de mil quinientos; de ellos, más de cien fueron descubiertos por los astrónomos del observatorio de Simeiz (en Crimea, a orillas del mar Negro), principalmente por el esfuerzo del entusiasta cazador de asteroides G. N. Neuymin. El lector no se sorprenderá si encuentra en la lista de los planetas menores nombres tales como "Vladilen" (en honor de Vladimir llich Lenin), y también "Morosov" y "Figner" (en honor de los célebres revolucionarios rusos), "Simeiz" y otros. Por el número de los asteroides descubiertos, Simeiz ocupa uno de los principales puestos entre los observatorios del mundo; por el estudio de los problemas teóricos relativos a los asteroides, la astronomía soviética también ocupa un puesto de importancia en la ciencia mundial. El Instituto de Astronomía Teórica de la Academia de Ciencias de la URSS (en Leningrado) predice desde hace muchos años las posiciones de gran número de planetas menores y rectifica la teoría de sus movimientos. El Instituto publica anualmente las posiciones prefijadas (las llamadas "efemérides") y las envía a todos los observatorios del mundo. Las dimensiones de los planetas menores varían en extremo. Los grandes, como Ceres o Palas (490 km de diámetro), son pocos. Unos 70 asteroides poseen un diámetro mayor de 100 km. La mayor parte de los planetas menores conocidos tienen un diámetro de 20 a 40 km. Pero hay muchos del todo "minúsculos" (entre comillas, porque en labios del astrónomo esta palabra tiene un valor relativo). Aunque falta mucho aún para descubrir todos los miembros del anillo de asteroides, hay sin embargo razones para afirmar que la masa total de los asteroides, de los descubiertos y los no descubiertos, constituye cerca de 4/100 de la masa del globo terrestre. Se supone que hasta ahora se ha descubierto no más del 5% del número de asteroides que pueden ser captados por los telescopios contemporáneos. "Pudiera pensarse -escribe nuestro mejor conocedor de estos pequeños planetas, G. N. Neuymin, que las propiedades físicas de todos los asteroides son aproximadamente las Astronomía Recreativa Yakov Perelman Capítulo 3 Preparado por Patricio Barros Antonio Bravo 16 mismas. En realidad, nos encontramos con una variedad sorprendente. Así, por ejemplo, la capacidad de reflexión determinada para los cuatro primeros asteroides indica que Ceres y Palas reflejan la luz como las rocas montañosas oscuras de la Tierra, Juno como las rocas claras y Vesta en forma semejante a las nubes blancas. Esto es tanto más enigmático cuanto que los asteroides, por su pequeñez, no pueden mantener a su alrededor una atmósfera. Sin duda están desprovistos de ella, y toda la diferencia en la capacidad de reflexión debe atribuirse a los materiales mismos de que está constituida la superficie del planeta." Algunos planetas menores presentan fluctuaciones de brillo que son testimonio de su movimiento de rotación y de su forma irregular. Volver Nuestros vecinos más próximos El asteroide Adonis mencionado anteriormente se distingue de los demás por su órbita, que no sólo es extraordinariamente grande, sino alargada como la de un cometa. Es notable también porque pasa muy cerca de la Tierra. En el año de su descubrimiento, Adonis pasó a una distancia de 1½ millones de km de, la Tierra. Es cierto que la Luna está más cerca de nosotros; pero la Luna, aunque es mucho mayor que los asteroides, no tiene el rango de éstos, no es un planeta independiente, sino el satélite de un planeta. Otro asteroide, Apolo, tiene también derecho a integrar la lista de los planetas más próximos a la Tierra. Este asteroide pasó, el año en que fue descubierto, a una distancia de sólo 3 millones de km de la Tierra. Esta distancia debe considerarse (en la escala planetaria) como muy corta, puesto que Marte no se aproxima a la Tierra a menos de 55 millones de kilómetros y Venus nunca pasa a menos de 40 millones de kilómetros de nosotros. Es interesante notar que este asteroide se acerca a Venus todavía mucho más: a sólo 200 000 km, ¡la mitad de la distancia de la Luna a la Tierra! Mayor acercamiento de los planetas en nuestro sistema no lo conocemos. Este asteroide vecino nuestro es también notable por ser, uno de los más pequeños planetas catalogados por los astrónomos. Su diámetro no es mayor de 2 km, y aun quizá menor. En 1937 fue descubierto el asteroide Hermes, que en ocasiones puede acercarse a la Tierra a una distancia del mismo orden que la que nos separa de la Luna (500 000 km). Su diámetro no excede de 1 km. Conviene observar en este ejemplo el valor que tiene en el lenguaje astronómico la palabra "pequeño". Un asteroide minúsculo como éste, con un volumen de sólo 0.52 km2, es decir, de 520.000.000 m3, si fuera de granito, pesaría aproximadamente 1.500.000.000 toneladas. Con este material podrían hacerse 300 monumentos como la pirámide de Cheops. Ya ven ustedes cómo ha de entenderse la palabra "pequeño" cuando es utilizada por los astrónomos. Volver Los acompañantes de Júpiter Entre los 1600 asteroides conocidos hasta ahora se destaca por sus notables movimientos un grupo formado por quince planetas menores que recibieron denominaciones de héroes de la guerra de Troya: Aquiles, Patroclo, Héctor, Néstor, Príamo, Agamenón, etc. Cada "troyano" gira alrededor del Sol de tal modo, que el asteroide, Júpiter y el Sol, en cualquier momento, ocupan los vértices de un triángulo equilátero. Los "troyanos" se pueden considerar como acompañantes particulares de Júpiter, al que escoltan manteniéndose a gran distancia: algunos se encuentran 60° delante de Júpiter; otros van detrás, igual número de grados, y todos completan una vuelta alrededor del Sol en el mismo tiempo. El equilibrio de ese triángulo planetario es interesante. Si un asteroide saliera de su posición, la fuerza de gravitación lo haría volver a su sitio. Mucho antes del descubrimiento de los "troyanos", la posibilidad de semejante equilibrio móvil de tres cuerpos sometidos a la gravitación fue predicha por el matemático, francés Astronomía Recreativa Yakov Perelman Capítulo 3 Preparado por Patricio Barros Antonio Bravo 17 Lagrange, en virtud de investigaciones teóricas por él realizadas. Lagrange estudió este caso como un problema matemático interesante, y pensó que quizás en algún lugar del espacio se daba realmente una relación semejante. La búsqueda cuidadosa de los asteroides condujo al descubrimiento, dentro de los límites del sistema planetaria mismo, de un ejemplo real del caso previsto teóricamente por Lagrange. Esto pone claramente de manifiesto la importancia que tiene para el desarrollo de la astronomía el estudio cuidadoso de los numerosos cuerpos celestes comprendidos en la denominación de planetas menores. Volver Los cielos ajenos Ya hemos efectuado un vuelo imaginario a la superficie de la Luna y echado desde allá una mirada a nuestra Tierra y a otros astros. Visitemos ahora mentalmente los planetas del sistema solar y admiremos desde allí el espectáculo del cielo. Empecemos por Venus. Si la atmósfera fuera allí suficientemente transparente, veríamos el disco del Sol con doble superficie de como lo vemos en nuestro cielo (figura 68). En correspondencia con esto, el Sol derrama sobre Venus doble cantidad de calor y de luz que sobre la Tierra. En el cielo nocturno de Venus nos sorprendería una estrella de brillo extraordinario. Es la Tierra, que brilla allí con luz mucho más intensa que Venus para nosotros, aunque las dimensiones de ambos planetas son casi las mismas. Es fácil comprender por qué esto es así. Venus gira alrededor del Sol más cerca que la Tierra. Por esta razón, en la época de su mayor aproximación a la Tierra no podemos verlo, pues dirige hacia nosotros su parte no iluminada. Tiene que alejarse un poco a un lado para hacerse visible, y entonces su luz nos llega solamente en forma de una hoz fina que constituye una parte pequeña del disco de Venus. Figura 68. Dimensiones aparentes del Sol desde la Tierra y desde otros planetas. Nuestra Tierra, en el cielo de Venus, en la época de su mayor aproximación a éste, brilla como un disco entero, igual que para nosotros Marte cuando se halla en oposición. En resumen, la Tierra, en el cielo de Venus, encontrándose en su fase plena, brillará seis veces más intensamente que Venus para nosotros en la época de su mayor brillo, siempre que el cielo de nuestro vecino sea completamente claro. Sin embargo, sería erróneo pensar que el brillo de la Tierra, regando copiosamente la mitad nocturna de Venus, puede ser causa de su "luz cenicienta". La iluminación de Venus por la Tierra es de igual intensidad que la iluminación producida por una bujía normal a una distancia de 35 m. Esto, evidentemente, no es suficiente para producir el fenómeno de la "luz cenicienta". Astronomía Recreativa Yakov Perelman Capítulo 3 Preparado por Patricio Barros Antonio Bravo 20 Por ejemplo, desde el V satélite (el más cercano) el disco gigante del planeta tendría un diámetro casi noventa veces mayor que nuestra Luna9 y brillaría sólo seis o siete veces más débilmente que el Sol. Cuando se columpiara sobre el horizonte con su borde inferior, su borde superior aparecería en la mitad de la bóveda celeste, y al sumergirse en el horizonte, el disco ocuparía la octava parte de éste. Sobre este disco, que giraría rápidamente, aparecerían de tiempo en tiempo circulitos oscuros, las sombras de las lunas de Júpiter, que no pueden, como es natural, oscurecer en forma notable al planeta gigante. Figura 70. Júpiter observado desde su tercer satélite. Trasladados al siguiente planeta, a Saturno, estudiemos sólo en qué forma se presentarían, a un observador situado en él, los famosos anillos de este planeta. Resulta, ante todo, que los anillos no serían visibles desde todos los puntos de la superficie de Saturno. Desde los polos hasta los paralelos 64° serían totalmente invisibles. En el límite de estos casquetes polares podría verse apenas el borde exterior del anillo externo (figura 71) . A partir del paralelo 64° y hasta el paralelo 50°, las condiciones de visibilidad de los anillos aumentarían; siempre sería visible su mayor parte, y en el paralelo 50°, el observador podría ya admirar toda la extensión de los anillos, los cuales se presentarían allí en su ángulo mayor: 12°. Más cerca del ecuador del planeta, los anillos se reducirían para el observador, aunque se elevarían más en el horizonte. En el ecuador mismo de Saturno, podrían verse en forma de una franja muy estrecha que cruza la bóveda celeste de Oeste a Este y pasa por el cenit. Lo dicho no da todavía una idea completa de las condiciones de visibilidad de los anillos. Es necesario recordar que sólo uno de los lados de los anillos está iluminado; el otro queda en la sombra. La parte iluminada es visible sólo desde la mitad de Saturno a la cual está dirigida. Así, pues, durante una mitad del largo año de Saturno sería posible ver los anillos sólo desde una mitad del planeta (el resto del año serían visibles desde la otra mitad), principalmente de día. En las breves horas en que los anillos fueran visibles de noche, se eclipsarían parcialmente en la sombra del planeta. Finalmente, todavía queda un detalle interesante: la zona ecuatorial, durante varios años terrestres, queda oscurecida por los anillos. El cuadro más fantástico del cielo, sin duda alguna, es el que descubriría un observador desde uno de los satélites más próximos a Saturno. Este planeta, con sus anillos, particularmente en las fases no llenas en que Saturno fuera visible en forma de hoz, constituiría un espectáculo como no se podría contemplar desde ningún otro punto de 9 El diámetro angular de Júpiter observado desde este satélite es mayor de 44º. Astronomía Recreativa Yakov Perelman Capítulo 3 Preparado por Patricio Barros Antonio Bravo 21 nuestro sistema planetario. En el cielo se dibujaría una hoz gigante cruzada por las franjas estrechas de los anillos, que se observarían de perfil y, alrededor de ellos, aparecería un grupo de satélites de Saturno, también en forma de hoz pero de mucho más reducidas dimensiones. Figura 71. La visibilidad de los anillos de Saturno para distintos puntos de la superficie de este planeta. En las regiones polares, hasta el grado 64, los anillos son absolutamente invisibles. La siguiente lista indica, en orden decreciente, los brillos comparativos de distintos astros vistos desde diversos planetas. 1. Venus desde Mercurio 2. La Tierra desde Venus 3. La Tierra desde Mercurio 4. Venus desde la Tierra. 5. Venus desde Marte. 6. Júpiter desde Marte. 7. Marte desde la Tierra 8. Mercurio desde Venus 9. La Tierra desde Marte 10. Júpiter desde la Tierra 11. Júpiter desde Venus 12. Júpiter desde Mercurio 13. Saturno desde Júpiter Hemos destacado los números 4, 7 y 10, los planetas vistos desde la Tierra, porque, como su brillo nos es conocido, pueden servirnos como punto de comparación para apreciar la visibilidad de los astros en otros planetas. La lista nos dice claramente que nuestro propio planeta, la Tierra, ocupa, en cuanto a brillo, uno de los primeros lugares en el cielo de los planetas más próximos al Sol; incluso en el cielo de Mercurio brilla con luz más viva que Venus y Júpiter para nosotros. En la sección "La magnitud estelar de los planetas" (capitulo IV), volveremos a hablar con mayor precisión sobre la valoración del brillo de la Tierra y demás planetas. Damos, finalmente, una serie de datos numéricos relativos al sistema solar que pueden servir como información para el lector10. En las tablas de la página siguiente se dan datos sobre los planetas del sistema solar. En la figura 72 se da una idea de cómo se ven los planetas con un telescopio no muy grande, de 100 aumentos. A la derecha, para comparación, se muestra la Luna tal cual se ve con un aumento similar (es necesario mantener el dibujo a la distancia de visión distinta, es decir, a 25 cm de los ojos). 10 A quien desee completar sus conocimientos sobre el sistema solar, puedo recomendarle el detallado Curso de Astronomía General, del profesor S. N. Blazhko, Editorial Técnica del Estado, 1947 Astronomía Recreativa Yakov Perelman Capítulo 3 Preparado por Patricio Barros Antonio Bravo 22 Diámetro km volumen (Tierra = 1) masa (Tierra = 1) densidad (agua = 1) Distancia media de la Tierra, km Sol 1.390.600 1.301.200 333.434 1.41 Luna 3.473 0.0203 0.0123 3.34. 384.400 Arriba, a la izquierda, está representado Mercurio, con el aumento indicado, en su mayor y en su menor alejamiento de nosotros. Debajo de él, Venus, y después, Marte, el sistema de Júpiter y Saturno con sus satélites mayores. (Para detalles sobre las dimensiones aparentes de los planetas, ver mi libro Física recreativa, libro 2, capítulo IX.) Mercurio en la posición más cercana (invisible) y en la más alejado Venus en la posición más cercana (invisible), la mayor hoz visible y en la posición más alejada Marte en la posición más cercana y en la más alejada Júpiter con los 4 satélites mayores Saturno con el satélite mayor
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved