Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

hidraulica FETEP- BH, Notas de estudo de Engenharia Mecânica

hidraulica FETEP- BH

Tipologia: Notas de estudo

Antes de 2010

Compartilhado em 04/11/2009

paulo-roberto-da-s-machado-8
paulo-roberto-da-s-machado-8 🇧🇷

4.8

(13)

47 documentos

Pré-visualização parcial do texto

Baixe hidraulica FETEP- BH e outras Notas de estudo em PDF para Engenharia Mecânica, somente na Docsity! 1 Centro Federal de Educação Tecnológica da Bahia Unidade de ensino de Santo Amaro APOSTILA DE HIDRÁULICA Marcio Rodrigues Gomes Marcos Andrade Fábio Ferraz 2008 CEFET/Ba Tecnologia Hidráulica 2 INTRODUÇÃO Experiências têm mostrado que a hidráulica vem se destacando e ganhando espaço como um meio de transmissão de energia nos mais variados segmentos do mercado, sendo a Hidráulica Industrial e Móbil as que apresentam um maior crescimento. Porém, pode-se notar que a hidráulica está presente em todos os setores industriais. Amplas áreas de automatização foram possíveis com a introdução de sistemas hidráulicos para controle de movimentos. Para um conhecimento detalhado e estudo da energia hidráulica vamos inicialmente entender o termo Hidráulica. O termo Hidráulica derivou-se da raiz grega Hidro, que tem o significado de água, por essa razão entendem-se por Hidráulica todas as leis e comportamentos relativos à água ou outro fluido, ou seja, Hidráulica é o estudo das características e uso dos fluidos sob pressão. Divisões da Hidráulica e aplicações  Estacionária  Mobil Prensa hidráulica Esmerilhadeira cilíndrica hidráulica CEFET/Ba Tecnologia Hidráulica 5 Temos: 𝐹2 = 𝑝1 ∙ 𝐴2 𝐹2 = 10𝑘𝑔𝑓/𝑐𝑚 2 ∙ 100𝑐𝑚2 𝐹2 = 1000𝑘𝑔𝑓 Podemos considerar que as forças são proporcionais às áreas dos pistões. Fatores de Conversão de Unidades de Pressão Equivalência entre Unidades de Pressão Na prática, podemos considerar: Conservação de Energia Relembrando um princípio enunciado por Lavoisier, onde ele menciona: "Na natureza nada se cria e nada se perde tudo se transforma." Realmente não podemos criar uma nova energia e nem tão pouco destruí-la e sim transformá-la em novas formas de energia. Quando desejamos realizar uma multiplicação de forças significa que teremos o pistão maior, movido pelo fluido deslocado pelo pistão menor, sendo que a distância de cada pistão seja inversamente proporcional às suas áreas. O que se ganha em relação à força tem que ser sacrificado em distância ou velocidade. CEFET/Ba Tecnologia Hidráulica 6 Quando o pistão de área = 1 cm2 se move 10 cm desloca um volume de 10cm3 para o pistão de área = 10 cm2. Conseqüentemente, o mesmo movimentará apenas 1cm de curso, já que o volume de fluido deslocado é o mesmo. Transmissão de Força Os quatro métodos de transmissão de energia: mecânica, elétrica, hidráulica e pneumática, são capazes de transmitir forças estáticas (energia potencial) tanto quanto a energia cinética. Quando uma força estática é transmitida em um líquido, essa transmissão ocorre de modo especial. Para ilustrar, vamos comparar como a transmissão ocorre através de um sólido e através de um líquido em um recipiente fechado. Força Transmitida através de um Sólido A força através de um sólido é transmitida em uma direção. Se empurrarmos o sólido em uma direção, a força é transmitida ao lado oposto, diretamente. CEFET/Ba Tecnologia Hidráulica 7 Força Transmitida através de um Líquido Se empurrarmos o tampão de um recipiente cheio de líquido, o líquido do recipiente transmitirá pressão sempre da mesma maneira, independentemente de como ela é gerada e da forma do mesmo. Fluido Hidráulico O fluido hidráulico é o elemento vital de um sistema hidráulico industrial. Ele é um meio de transmissão de energia, um lubrificante, um vedador e um veículo de transferência de calor. O fluido hidráulico à base de petróleo é o mais comum. Fluido à Base de Petróleo O fluido à base de petróleo é mais do que um óleo comum. Os aditivos são ingredientes importantes na sua composição. Os aditivos dão ao óleo características que o tornam apropriado para uso em sistemas hidráulicos. Índice de Viscosidade (IV) O índice de viscosidade é um número puro que indica como um fluido varia em viscosidade quando a temperatura muda. Um fluido com um alto índice de viscosidade mudaria relativamente pouco com a temperatura. A maior parte dos sistemas hidráulicos industriais requer um fluido com um índice de viscosidade de 90 ou mais. Inibidores de Oxidação - A oxidação do óleo ocorre por causa de uma reação entre o óleo e o oxigênio do ar. A oxidação resulta em baixa capacidade de lubrificação na formação de ácido e na geração de partículas de carbono e aumento da viscosidade do fluido. A oxidação do óleo é aumentada por três fatores: 1. Alta temperatura do óleo. 2. Catalisadores metálicos, tais como cobre, ferro ou chumbo. 3. O aumento no fornecimento de oxigênio. CEFET/Ba Tecnologia Hidráulica 10 Velocidade x Vazão Nos sistemas dinâmicos, o fluido que passa pela tubulação se desloca a certa velocidade. Esta é a velocidade do fluido, que de modo geral é medida em centímetros por segundo (cm/seg.). O volume do fluido passando pela tubulação em um determinado período de tempo é a vazão (Q = V.A), em litros por segundo (l/s). A relação entre velocidade e vazão pode ser vista na ilustração. Para encher um recipiente de 20 litros em um minuto, o volume de fluido em um cano de grande diâmetro deve passar a uma velocidade de 300 cm/s. No tubo de pequeno diâmetro, o volume deve passar a uma velocidade de 600 cm/s para encher o recipiente no tempo de um minuto. Em ambos os casos a vazão é de 20 litros/minuto, mas as velocidades do fluido são diferentes. )()()( ocomprimentáreavolume SAv  )( )( )( tempo volume vazão t v Q  )()()( . áreavelocidadevazão AVQ  )( )( )( área vazão velocidade A Q V  CEFET/Ba Tecnologia Hidráulica 11 Potência x Eficiência em sistemas hidráulicos Em sistemas hidráulicos, devido às perdas de cargas geradas pelos próprios elementos do circuito, como por exemplo: bombas, válvulas, curvas, cilindros, instrumentos de medida e, a própria tubulação, o aproveitamento final da energia fornecida ao circuito é cerca de 75%, conforme ilustrado na figura a seguir. Cavitação A cavitação é provocada quando, por algum motivo, gera-se uma zona de depressão, ou pressão negativa. Quando isso ocorre, o fluido tende a vaporizar formando bolhas de ar. Ao passar da zona de depressão, o fluido volta a ficar submetido à pressão de trabalho e, as bolhas de ar implodem provocando ondas de choque, que provocam desgaste, corrosão e até mesmo destroem pedaços dos rotores, carcaças e tubulações. Causas da cavitação  Filtro da linha de sucção saturado  Respiro do reservatório fechado ou entupido  Linha de sucção muito longa  Muitas curvas na linha de sucção (perdas de cargas)  Estrangulamento na linha de sucção  Altura estática da linha de sucção  Linha de sucção congelada CEFET/Ba Tecnologia Hidráulica 12 Exemplo de defeito provocado pela cavitação: Corrosão das palhetas da bomba. Características de uma bomba em cavitação  Queda de rendimento  Marcha irregular  Vibração provocada pelo desbalanceamento  Ruído provocado pela implosão das bolhas Como evitar a cavitação Primeiramente, elaborando-se um bom projeto para a linha de sucção. Segundo, aplicando-se uma manutenção preventiva. Grupo de acionamento e reservatório hidráulico A função de um reservatório hidráulico é conter ou armazenar o fluido hidráulico de um sistema. Do que consiste um Reservatório Hidráulico Os reservatórios hidráulicos consistem de quatro paredes (geralmente de aço); uma base abaulada; um topo plano com uma placa de apoio, quatro pés; linhas de sucção, retorno e drenos; plugue do dreno; indicador de nível de óleo; tampa para respiradouro e enchimento; tampa para limpeza e placa defletora (Chicana). CEFET/Ba Tecnologia Hidráulica 15 Elementos de Filtro de Profundidade Os elementos do filtro de profundidade forçam o fluido a passar através de uma espessura apreciável de várias camadas de material. A contaminação é retida por causa do entrelaçamento das fibras e a conseqüente trajetória irregular que o fluido deve tomar. Os papéis tratados e os materiais sintéticos são usados comumente como materiais porosos de elementos de filtro de profundidade. Fibra de vidro grossa aumentada em 100 vezes Fibra de vidro fina aumentada em 100 vezes Elementos do Tipo de Superfície Num filtro do tipo de superfície, um fluxo de fluido tem uma trajetória direta de fluxo através de uma camada de material. A sujeira é retida na superfície do elemento que está voltada para o fluxo. Telas de arame ou metal perfurado são tipos comuns de materiais usados como elemento de filtro de superfície. CEFET/Ba Tecnologia Hidráulica 16 Tipo de Filtragem pela Posição no Sistema O filtro é a proteção para o componente hidráulico. Seria ideal que cada componente do sistema fosse equipado com o seu próprio filtro, mas isso não é economicamente prático na maioria dos casos. Para se obterem melhores resultados, a prática usual é colocar filtros em pontos estratégicos do sistema. Filtros de Sucção Existem 2 tipos de filtro de sucção: Filtro de Sucção Interno: São os mais simples e mais utilizados. Têm a forma cilíndrica com tela metálica com malha de 74 a 150 mícrons, não possuem carcaça e são instalados dentro do reservatório, abaixo, no nível do fluido. Apesar de serem chamados de filtro, impedem apenas a passagem de grandes partículas (na língua inglesa são chamados de “strainer”, que significa peneira). Vantagens: 1. Protegem a bomba da contaminação do reservatório. 2. Por não terem carcaça são filtros baratos. Desvantagens: 1. São de difícil manutenção, especialmente se o fluido está quente. 2. Não possuem indicador. 3. Podem bloquear o fluxo de fluido e prejudicar a bomba se não estiverem dimensionados corretamente, ou se não conservados adequadamente. 4. Não protegem os elementos do sistema das partículas geradas pela bomba. CEFET/Ba Tecnologia Hidráulica 17 Filtro de Sucção Externo Pelo fato de possuírem carcaça estes filtros são instalados diretamente na linha de sucção fora do reservatório. Existem modelos que são instalados no topo ou na lateral dos reservatórios. Estes filtros possuem malha de filtragem de 3 a 238 mícrons. Vantagens: 1. Protegem a bomba da contaminação do reservatório. 2. Indicador mostra quando o elemento está sujo. 3. Podem ser trocados sem a desmontagem da linha de sucção do reservatório. Desvantagens: 1. Podem bloquear o fluxo de fluido e prejudicar a bomba se não estiverem dimensionados corretamente, ou se não conservados adequadamente. 2. Não protegem os elementos do sistema das partículas geradas pela bomba. Filtro de Pressão Um filtro de pressão é posicionado no circuito, entre a bomba e um componente do sistema. A malha de filtragem dos filtros de pressão é de 3 a 40 mícrons. Um filtro de pressão pode também ser posicionado entre os componentes do sistema. Vantagens: 1. Filtram partículas muito finas visto que a pressão do sistema pode impulsionar o fluido através do elemento. 2. Pode proteger um componente específico contra o perigo de contaminação por partículas. Desvantagens: 1. A carcaça de um filtro de pressão deve ser projetada para alta pressão. 2. São caros porque devem ser reforçados para suportar altas pressões, choques hidráulicos e diferencial de pressão. CEFET/Ba Tecnologia Hidráulica 20 Bombas de engrenagens A bomba de engrenagem consiste basicamente de uma carcaça com orifícios de entrada e de saída, e de um mecanismo de bombeamento composto de duas engrenagens. Uma das engrenagens, a engrenagem motora, é ligada a um eixo que é conectado a um elemento acionador principal. A outra engrenagem é a engrenagem movida. Como funciona uma Bomba de Engrenagem No lado da entrada, os dentes das engrenagens desengrenam, o fluido entra na bomba, sendo conduzido pelo espaço existente entre os dentes e a carcaça, para o lado da saída onde os dentes das engrenagens engrenam e forçam o fluido para fora do sistema. Uma vedação positiva neste tipo de bomba é realizada entre os dentes e a carcaça, e entre os próprios dentes de engrenamento. As bombas de engrenagem têm geralmente um projeto não compensado. Bomba de Engrenagem Externa A bomba de engrenagem que foi descrita acima é uma bomba de engrenagem externa, isto é, ambas as engrenagens têm dentes em suas circunferências externas. Estas bombas são às vezes chamadas de bombas de dentes-sobre-dentes. Há basicamente três tipos de engrenagens usadas em bombas de engrenagem externa; as de engrenagens de dentes retos, as helicoidais e as que têm forma de espinha de peixe. Visto que as bombas de engrenagem de dentes retos são as mais fáceis de fabricar, este tipo de bomba é o mais comum. Bomba de Engrenagem Interna Uma bomba de engrenagem interna consiste de uma engrenagem externa cujos dentes se engrenam na circunferência interna de uma engrenagem maior. O tipo mais comum de bomba de engrenagem interna nos sistemas industriais é a bomba tipo gerotor. Bomba Tipo Gerotor A bomba tipo gerotor é uma bomba de engrenagem interna com uma engrenagem motora interna e uma engrenagem movida externa. A engrenagem interna tem um dente a menos do que a engrenagem externa. Enquanto a engrenagem interna é movida por um elemento acionado, ela movimenta a engrenagem externa maior. De um lado do mecanismo de bombeamento forma-se um volume crescente, enquanto os dentes da engrenagem desengrenam. Do outro lado da bomba é formado um volume decrescente. Uma bomba tipo gerotor tem um projeto não compensado. O fluido que entra no mecanismo de CEFET/Ba Tecnologia Hidráulica 21 bombeamento é separado do fluido de descarga por meio de uma placa de abertura. Enquanto o fluido é impelido da entrada para a saída, uma vedação positiva é mantida, conforme os dentes da engrenagem interna seguem o contorno do topo das cristas e vales da engrenagem externa. Especificações das Bombas de Engrenagem Vazão: Ver dados de rendimento de cada série. Pressão: Ver dados de rendimento de cada série. Torque-Combinado: 9,23 máximo (regime contínuo). 11 kgf.m máx.(regime intermitente). O segundo estágio da bomba não pode exceder 3kgf.m. Material do Corpo: Alumínio fundido Temperatura de operação: -40oC a 85oC. Notas de Instalação: Ver em informações para instalação, recomendações específicas pertinentes à limpeza do sistema, fluidos start-up, condições de entrada, alinhamento do eixo, e outros importantes fatores relativos à própria instalação e uso destas bombas. Dados de Rendimento O primeiro e o segundo estágios combinados não podem exceder a: 9,23 kgf.m (regime contínuo) 11 Kgf.m (regime intermitente) O segundo estágio não pode exceder a 3 kgf.m. Exemplo: H39 a 172 bar = 2,19 kgf.m x 172 / 69 bar = 5,49 kgf.m D17 a 172 bar = 0,94 kgf.m x 172 / 69 bar = 2,34 kgf.m Torque total: 7,8 kgf.m Informações para instalação de Bombas de Engrenagem Fluidos recomendados: O fluido deve ter viscosidade de operação na faixa de 80 a 100 SSU. Máxima viscosidade para início de fundionamento 4000 SSU. Filtragem: Para uma maior vida útil da bomba e dos componentes do sistema, o fluido não deverá conter mais que 125 partículas maiores de 10 microns por milímetro de fluido (classe SAE 4). Fluidos compatíveis:  Fluidos à base de petróleo  Água glicol  Emulsão água-óleo  Fluido de transmissão  Óleo mineral Nota: todos os dados são para uso com fluidos à base de petróleo. Para uso com fluidos água-glicol e emulsão água-óleo, considerar metade das pressões indicadas, rotação máxima reduzida de 1000 rpm e especificar mancais do tipo "DU". Consulte o fabricante para outros fluidos especiais. CEFET/Ba Tecnologia Hidráulica 22 Condições na entrada: - Vácuo máximo 25,4 mm de Hg a 1800 rpm 12,7 m m de Hg à rotação máxima - Máxima pressão positiva: 1,4 bar Rotação e alinhamento do eixo: alinhamento entre o eixo do motor e o da bomba deve estar dentro de 0,18 mm LTI. Siga as instruções do fabricante do acoplamento durante a instalação, para prevenir que o eixo da bomba seja danificado. Afixação do motor e da bomba deve ser em bases rígidas. O acoplamento deve estar dimensionado para absorver choques e suportar o torque desenvolvido durante a operação. Posição de montagem: Não há restrições Partida: Quando a linha de sucção estiver vazia na partida, o circuito deverá estar aberto para tanque. Instalações especiais: Consulte o fabricante para qualquer uma das seguintes aplicações: Pressão e/ou rotação acima das indicadas, acionamento indireto, fluidos além dos especificados, temperatura acima de 85°C. Bombas de Palheta As bombas de palheta produzem uma ação de bombeamento fazendo com que as palhetas acompanhem o contorno de um anel ou carcaça. O mecanismo de bombeamento de uma bomba de palheta consiste de: rotor, palhetas, anel e uma placa de orifício com aberturas de entrada e saída. Como trabalha uma Bomba de Palheta O rotor de uma bomba de palheta suporta as palhetas e é ligado a um eixo que é conectado a um acionador principal. À medida que o rotor é girado, as palhetas são “expulsas” por inércia e acompanham o contorno do cilindro (o anel não gira). Quando as palhetas fazem contato com o anel, é formada uma vedação positiva entre o topo da palheta e o anel. O rotor é posicionado fora do centro do anel. Quando o rotor é girado, um volume crescente e decrescente é formado dentro do anel. Não havendo abertura no anel, uma placa de entrada é usada para separar o fluido que entra do fluido que sai. A placa de entrada se encaixa sobre o anel, o rotor e as palhetas. A abertura de entrada da placa de orifício está localizada onde o volume crescente é formado. O orifício de saída da placa de orifício está localizado onde o volume decrescente é gerado. Todo o fluído entra e sai do mecanismo de bombeamento através da placa de orifício (as aberturas de entrada e de saída na placa de orifício são conectadas respectivamente às aberturas de entrada e de saída na carcaça das bombas). CEFET/Ba Tecnologia Hidráulica 25 Características da PFVI  Conjunto Rotativo com 12 Palhetas para Operação Silenciosa, Baixo Nível de Ruído  Conjunto Rotativo Projetado para Facilitar Manutenção no Campo e Transformações/Conversões  Várias Opções de Bombas para Atender os Mais Complexos Circuitos  Projeto Simples e Eficiente  Grande Tolerância à Contaminação do Sistema  Balanceada Hidraulicamente para Reduzir os Esforços nos Mancais e Aumentar a Vida Útil da Bomba Especificações da PFVI Vazão*: Bomba Simples - 45 a 227 l/mim a 1200 RPM Bomba Dupla - 64 a 372 l/mim a 1200 RPM Rotações: até 1800 RPM Pressões de Operação*: até 175 bar Contínua Montagens: PFVI 25 - Flange SAE B - 2 Furos PFVI 35 - Flange SAE C - 2 Furos PFVI 45 - Flange SAE C - 2 Furos Material do Corpo: Ferro Fundido Temperatura de Operação: -40°C a 85°C Classe de Limpeza do Óleo: ISO 18/15 ou Melhor Informações sobre Instalação: Fluido Recomendado Recomenda-se o uso de óleo hidráulico de primeira linha com viscosidade entre 30 e 50 cST (150 – 250 SSU) a 38°C. A viscosidade normal de operação é entre 17 e 180 cST (80 - 1000 SSU). A viscosidade máxima na partida é 1000 cST (4000 SSU). Fluidos minerais com aditivos antidesgaste e inibidores de oxidação e ferrugem são os preferidos. Fluidos sintéticos, água-glicol e emulsões de águaóleo podem ser utilizados com restrições. Filtragem O sistema hidráulico deve estar protegido contra contaminação a fim de aumentar a vida útil da bomba e dos seus componentes. O fluido deve ser filtrado durante o enchimento e continuamente durante a operação, para manter o nível de contaminação em ISO 18/15 ou melhor. Recomenda-se o uso de filtro de sucção de 149 microns absoluto (100 "mesh") com "bypass" e filtro de retorno de 10 microns absoluto. A substituição dos elementos deve ocorrer após as primeiras 487 horas de operação em uma instalação nova, e posteriormente a cada 500 horas de operação, ou de acordo com as instruções do fabricante do filtro. Montagem e Alinhamento As bombas podem ser montadas em qualquer posição. A posição preferencial é com o eixo na horizontal. Os flanges SAE B ou C com 2 furos são padrões para ambos os tipos de eixo, chavetado ou estriado. Em acoplamentos diretos os eixos da bomba e do motor devem estar alinhados dentro de 0,1 mm LTI. Evite aplicações que induzam esforços radiais e laterais no eixo. CEFET/Ba Tecnologia Hidráulica 26 Partida Antes de dar partida à bomba, os seguintes itens devem ser verificados: O sentido de rotação do motor deve estar de acordo com o sentido de rotação indicado no código existente na plaqueta de identificação da bomba. Eixos estriados devem ser lubrificados com graxa anticorrosiva ou lubrificante similar. A carcaça da bomba deve ser enchida com óleo. Nunca deve ser dada partida à bomba seca ou fazê-la funcionar sem óleo. Observe as recomendações quanto à filtragem do fluido. As conexões de entrada e saída de óleo devem estar apertadas e instaladas adequadamente. Todos os parafusos e flanges de fixação devem estar apertados e alinhados. Durante a partida, a válvula de alívio do sistema deve ter a pressão reduzida, preferencialmente na regulagem mínima. Na partida, inicie a bomba pelo procedimento de ligar-desligar-ligar, até que se inicie a sucção e fluxo normal. Sangrar o ar do sistema até que um fluxo constante de óleo seja observado. Operação Eleve lentamente a pressão da válvula de alívio até atingir o valor de ajuste para operação normal. Verifique e elimine qualquer vazamento em tubulações, conexões e componentes. A sua bomba de palhetas Parker terá uma vida longa e operação confiável e eficiente. Nota: Para maiores informações de vazão e rotação, consulte as informações técnicas de cada modelo. As bombas de pistão geram uma ação de bombeamento, fazendo com que os pistões se alterem dentro de um tambor cilíndrico. O mecanismo de bombeamento de uma bomba de pistão consiste basicamente de um tambor de cilindro, pistões com sapatas, placa de deslizamento, sapata, mola de sapata e placa de orifício. Como funciona uma Bomba de Pistão No exemplo da ilustração a seguir, um tambor de cilindro com um cilindro é adaptado com um pistão. A placa de deslizamento é posicionada a um certo ângulo. A sapata do pistão corre na superfície da placa de deslizamento. CEFET/Ba Tecnologia Hidráulica 27 Quando um tambor de cilindro gira, a sapata do pistão segue a superfície da placa de deslizamento (a placa de deslizamento não gira). Uma vez que a placa de deslizamento está a um dado ângulo o pistão alterna dentro do cilindro. Em uma das metades do ciclo de rotação, o pistão sai do bloco do cilindro e gera um volume crescente. Na outra metade do ciclo de rotação, este pistão entra no bloco e gera um volume decrescente. Na prática, o tambor do cilindro é adaptado com muitos pistões. As sapatas dos pistões são forçadas contra a superfície da placa de deslizamento pela sapata e pela mola. Para separar o fluido que entra do fluido que sai, uma placa de orifício é colocada na extremidade do bloco do cilindro, que fica do lado oposto ao da placa de deslizamento. Um eixo é ligado ao tambor do cilindro, que o conecta ao elemento acionado. Este eixo pode ficar localizado na extremidade do bloco, onde há fluxo, ou, como acontece mais comumente, ele pode ser posicionado na extremidade da placa de deslizamento. Neste caso, a placa de deslizamento e a sapata têm um furo nos seus centros para receber o eixo. Se o eixo estiver posicionado na outra extremidade, a placa de orifício tem o furo do eixo. A bomba de pistão que foi descrita acima é conhecida como uma bomba de pistão em linha ou axial, isto é, os pistões giram em torno do eixo, que é coaxial com o eixo da bomba. As bombas de pistão axial são as bombas de pistão mais populares em aplicações industriais. Outros tipos de bombas de pistão são as bombas de eixo inclinado e as de pistão radial. Bombas de Pistão Axial de Volume Variável O deslocamento da bomba de pistão axial é determinado pela distância que os pistões são puxados para dentro e empurrados para fora do tambor do cilindro. Visto que o ângulo da placa de deslizamento controla a distância em uma bomba de pistão axial, nós devemos somente mudar o ângulo da placa de deslizamento para alterar o curso do pistão e o volume da bomba. Com a placa de deslizamento posicionada a um ângulo grande, os pistões executam um curso longo dentro do tambor do cilindro. Com a placa de deslizamento posicionada a um ângulo pequeno, os pistões executam um curso pequeno dentro do tambor do cilindro. Variando-se um ângulo da placa de deslizamento, o fluxo de saída da bomba pode ser alterado. Vários meios para variar o ângulo da placa de deslizamento são oferecidos por CEFET/Ba Tecnologia Hidráulica 30 Válvula limitadora de pressão A pressão máxima do sistema pode ser controlada com o uso de uma válvula de pressão normalmente fechada. Com a via primária da válvula conectada à pressão do sistema e a via secundária conectada ao tanque, o carretel no corpo da válvula é acionado por um nível predeterminado de pressão, e neste ponto as vias primárias e secundárias são conectadas e o fluxo é desviado para o tanque. Esse tipo de controle de pressão normalmente fechado é conhecido como válvula limitadora de pressão. Ajustamento de Pressão Numa válvula de controle de pressão, a pressão da mola é usualmente variada pela regulagem de um parafuso que comprime ou descomprime a mola. Como se utilizar uma Válvula de Pressão Normalmente Fechada(NF) As válvulas de controle de pressão normalmente fechadas têm muitas aplicações num sistema hidráulico. Além de a válvula ser usada como um alívio do sistema, um controle de pressão normalmente fechado pode ser usado para fazer com que uma operação ocorra antes da outra. Pode também ser usada para contrabalancear forças mecânicas externas que atuam no sistema. CEFET/Ba Tecnologia Hidráulica 31 Válvula de Seqüência Uma válvula de controle de pressão normalmente fechada, que faz com que uma operação ocorra antes da outra, é conhecida como válvula de seqüência. Como funciona uma válvula de Seqüência no Circuito Num circuito com operações de fixação e usinagem, o cilindro de presilhamento deve avançar antes do cilindro da broca. Para que isto aconteça, uma válvula de sequência é colocada na linha do circuito, imediatamente antes do cilindro da broca. A mola na válvula de sequência não permitirá que o carretel interligue as vias primárias e secundárias até que a pressão seja maior do que a mola. O fluxo para o cilindro da broca é bloqueado. Desta maneira, o cilindro de presilhamento avançará primeiro. Quando o grampo entra em contato com a peça, a bomba aplica mais pressão para vencer a resistência. Esse aumento de pressão desloca o carretel na válvula de sequência. As vias principal e secundária são interligadas. O fluxo vai para o cilindro da broca. Válvula de Contrabalanço Uma válvula de controle de pressão normalmente fechada pode ser usada para equilibrar ou contrabalancear um peso, tal como o da prensa a que nos referimos. Esta válvula é chamada de válvula de contrabalanço. Válvula de Contrabalanço no Circuito Num circuito de uma prensa, quando a válvula direcional remete fluxo para o lado traseiro do atuador, o peso fixado à haste cairá de maneira incontrolável. O fluxo da bomba não conseguirá manter-se. Para evitar esta situação, uma válvula de pressão normalmente fechada é instalada abaixo do cilindro da prensa. O carretel da válvula não conectará as vias principal e secundária até que uma pressão, que é transmitida à extremidade do carretel, seja maior do que a pressão desenvolvida pelo peso (isto é, quando a pressão do fluido estiver presente no lado traseiro do pistão). Deste modo, o peso é contrabalanceado em todo o seu curso descendente. CEFET/Ba Tecnologia Hidráulica 32 Válvula de Pressão Normalmente Aberta Uma válvula de controle de pressão normalmente fechada tem as vias primária e secundária separadas, e a pressão, na base do carretel, é transmitida da via primária. Uma válvula de pressão normalmente aberta tem as vias primária e secundária interligadas, e a pressão, na base do carretel, é transmitida da via secundária. CEFET/Ba Tecnologia Hidráulica 35 Posição Normal Posição normal de uma válvula de controle direcional é a posição em que se encontram os elementos internos quando a mesma não foi acionada. Esta posição geralmente é mantida por força de uma mola. Tipo de Acionamento O tipo de acionamento de uma válvula de controle direcional define a sua aplicação no circuito, estes acionamentos podem ocorrer por força muscular, mecânica, pneumática, hidráulica ou elétrica. Válvula Direcional de 2/2 Vias Uma válvula direcional de 2 vias consiste de duas passagens que são conectadas e desconectadas. Em uma posição extrema do carretel, o curso de fluxo é aberto através da válvula. No outro extremo não há fluxo através da válvula. Uma válvula de 2 vias executa uma função de liga-desliga. Esta função é usada em muitos sistemas, como trava de segurança e para isolar ou conectar várias partes do sistema. Válvula Direcional de 3/2 Vias Uma válvula de 3 vias consiste de três passagens dentro de um corpo de válvula - via de pressão, via de tanque e uma via de utilização. A função desta válvula é pressurizar o orifício de um atuador. Quando o carretel está posicionado no outro extremo, a válvula esvazia o mesmo orifício do atuador. Em outras palavras, a válvula pressuriza e esvazia alternadamente um orifício do atuador. CEFET/Ba Tecnologia Hidráulica 36 Válvulas Direcionais de 3 Vias, no Circuito Uma válvula direcional de 3 vias é usada para operar atuadores de ação simples, como cilindros, martelos e cilindros com retorno por mola. Nestas aplicações, a válvula de 3 vias remete pressão do fluido e o fluxo para o lado traseiro do cilindro. Quando o carretel é acionado para a outra posição extrema, o fluxo para o atuador é bloqueado. Ao mesmo tempo a via do atuador, dentro do corpo, é conectada ao tanque. Um cilindro martelo vertical retorna pelo seu próprio peso, ou pelo peso de sua carga, quando a via do atuador de uma válvula de 3 vias é drenada para o tanque. Num cilindro de retorno de mola, a haste do pistão é retornada por uma mola que está dentro do corpo do cilindro. Em aplicações hidráulicas industriais, geralmente não são encontradas válvulas de 3 vias. Se uma função de 3 vias for requerida, uma válvula de 4 vias é convertida em uma válvula de 3 vias, plugando-se uma via do atuador. Válvulas Normalmente Abertas(NA) e Válvulas Normalmente Fechadas(NF) As válvulas de 2 vias e as válvulas de 3 vias com retorno por mola podem ser tanto normalmente abertas como normalmente fechadas, isto é, quando o atuador não está energizado, o fluxo pode passar ou não através da válvula. Numa válvula de 3 vias e duas posições, por haver sempre uma passagem aberta através da válvula, o “normalmente fechada” indica que a passagem “p” fica bloqueada quando o acionador da válvula não é energizado. Quando as válvulas direcionais de retorno por mola são mostradas simbolicamente no circuito, a válvula é posicionada no circuito para mostrar a sua condição normal. CEFET/Ba Tecnologia Hidráulica 37 Válvula Direcional de 4/2 Vias A função de uma válvula direcional de 4 vias é causar o movimento de reversão de um cilindro ou de um motor hidráulico. Para desempenhar esta função, o carretel dirige o fluxo de passagem da bomba para uma passagem do atuador quando ele está em uma posição extrema. Ao mesmo tempo, o carretel é posicionado para que a outra passagem do atuador seja descarregada para o tanque. Válvulas Direcionais de 4/2 Vias, no Circuito Visto que todas as válvulas são compostas de um corpo e de uma parte interna móvel, a parte móvel de todas as válvulas tem pelo menos duas posições, ambas nos extremos. Estas duas posições, numa válvula direcional, são representadas por dois quadrados separados. Cada quadrado mostra, por meio de setas, como o carretel está conectado às vias dentro do corpo, naquele ponto. Quando a válvula é mostrada simbolicamente, os dois quadrados são conectados juntos, mas quando colocada num circuito, somente um quadrado é conectado ao circuito. Com este arranjo, a condição da válvula permite a visualização do movimento do cilindro em uma direção. Para visualizar o atuador se movendo na direção oposta, sobreponha mentalmente um dos quadrados do símbolo ao outro, dentro do circuito. CEFET/Ba Tecnologia Hidráulica 40 Retorno por Mola Uma válvula direcional de 2 posições geralmente usa um tipo de atuador para acionar o carretel da válvula direcional para uma posição extrema. O carretel é geralmente retornado para a sua posição original por meio de uma mola. As válvulas de 2 posições desta natureza são conhecidas como válvulas com retorno por mola. Pino de Trava (Detente) Se dois acionadores são usados para deslocar o carretel de uma válvula de duas posições, às vezes há necessidade de travamento. A trava é um mecanismo de posicionamento que mantém o carretel numa dada posição. O carretel de uma válvula com trava é equipado com ranhuras ou rasgos. Cada ranhura é um receptáculo para uma peça móvel carregada por mola. Na trava ilustrada, a peça móvel é uma esfera. Com a esfera na ranhura, o carretel é deslocado, a esfera é forçada para fora de uma ranhura e para dentro de outra. As válvulas direcionais equipadas com travas não precisam manter os seus acionadores energizados para se manter na posição. Nota: Somente uma energização momentânea do solenóide é necessária para deslocar o êmbolo e mantê-lo posicionado, numa válvula com detente. A mínima duração do sinal deve ser de aproximadamente 0,1 segundos para ambas as tensões CA e CC. O êmbolo será mantido em sua posição travada, somente se a válvula for montada na condição horizontal e sem a presença de choques hidráulicos e vibrações. Tipos de Centro Com referências às várias possibilidades de vias de fluxo através de uma válvula direcional, as vias de fluxo seriam consideradas únicas enquanto o carretel estivesse em cada posição. No entanto, há posições intermediárias do carretel. As válvulas de controle direcional de 4 vias, usadas na indústria móbil, têm frequentemente diversas posições intermediárias entre os extremos. As válvulas hidráulicas industriais de 4 vias são geralmente válvulas de 3 posições, consistindo de 2 posições extremas e uma posição central. As duas posições extremas da válvula direcional de quatro vias estão diretamente relacionadas ao movimento do atuador. Elas controlam o movimento do atuador em uma direção, tanto quanto na outra. A posição central de uma válvula direcional é projetada para satisfazer uma necessidade ou condição do sistema. Por este motivo, a posição central de uma válvula direcional é geralmente designada de condição de centro. Há uma variedade de condições centrais disponíveis nas válvulas direcionais de quatro vias. Algumas destas condições mais conhecidas são: centro aberto, centro fechado, centro CEFET/Ba Tecnologia Hidráulica 41 tandem e centro aberto negativo. Estas condições de centro podem ser conseguidas dentro do próprio corpo da válvula, com a simples utilização de um êmbolo adequado. Válvulas de Centro Aberto no Circuito Uma condição de centro aberto permite o movimento livre do atuador enquanto o fluxo da bomba é devolvido ao tanque a uma pressão baixa. As válvulas de 4 vias, de centro aberto, são muitas vezes usadas em circuitos de atuadores simples. Nestes sistemas, depois do atuador completar o seu ciclo, o carretel da válvula direcional é centralizado e o fluxo da bomba retorna ao tanque a uma pressão baixa. Ao mesmo tempo, o atuador fica livre para se movimentar. Uma desvantagem da válvula de centro aberto é que nenhum outro atuador pode ser operado quando a válvula estiver centrada. CEFET/Ba Tecnologia Hidráulica 42 Válvulas de Centro Fechado no Circuito Uma condição de centro fechado pára o movimento de um atuador, bem como permite que cada atuador individual, no sistema, opere independentemente de um suprimento de força. Os carretéis das válvulas direcionais de centro fechado têm algumas desvantagens. Uma delas é que o fluxo da bomba não pode ser descarregado para o tanque, através de válvula direcional, durante o tempo em que o atuador está inativo. Outra desvantagem é que o carretel, nesta válvula, vaza como em qualquer válvula do tipo carretel. Além disso, se o carretel ficar sujeito à pressão do sistema por mais de uns poucos minutos, a pressão se equalizará nas linhas A e B dos atuadores, a aproximadamente metade da pressão do sistema. O caminho de vazamento através da superfície de bloqueio do carretel da válvula direcional são orifícios que medem o fluxo. Quando na posição de centro, a pressão do sistema atua na via “P” da válvula. Esta posição causa o fluxo do fluído através da superfície de bloqueio para a passagem do atuador. Então, o vazamento passa através do restante da superfície de bloqueio para a passagem do tanque. A pressão, na via do atuador, a essa altura será aproximadamente a metade da pressão do sistema. CEFET/Ba Tecnologia Hidráulica 45 O fluido passa pela válvula somente em uma direção. Quando a pressão do sistema na entrada da válvula é muito alta, o suficiente para vencer a mola que segura o assento, este é deslocado para trás. O fluxo passa através da vávula. Isso é conhecido como fluxo direcional livre da válvula de retenção. Se o fluido for impelido a entrar pela via de saída o assento é empurrado contra a sua sede. O fluxo estanca. Válvula de Retenção no Circuito Uma válvula de retenção é uma combinação de válvula direcional e válvula de pressão. Ela permite o fluxo somente em uma direção, por isto é uma válvula unidirecional. A válvula de retenção é usada comumente em um sistema hidráulico, como válvula de "by pass". Isso permite que o fluxo contorne certos componentes, tais como as reguladoras de vazão que restringem o fluxo na direção contrária. Uma válvula de retenção é também usada para isolar uma seção do sistema ou um componente, tal como um acumulador. Uma válvula de retenção permite evitar que um reservatório descarregue o fluxo de volta à válvula de descarga ou através da bomba. A parte móvel numa válvula de retenção está sempre presa por uma mola de baixa pressão. Quando uma mola mais forte é utilizada, a válvula de retenção pode ser usada como válvula de controle de pressão (isso não se faz comumente). Válvula de Retenção Operada por Piloto Uma válvula de retenção operada por piloto permite o fluxo em uma direção. Na direção contrária, o fluxo pode passar quando a válvula piloto deslocar o assento de sua sede no corpo da válvula. Uma válvula de retenção operada por piloto consiste do corpo da válvula, vias de entrada e saída, um assento pressionado por uma mola, como no caso da válvula de retenção. Do lado oposto do assento da válvula está a haste de deslocamento e o pistão do piloto. O piloto é pressurizado através do pistão pela conexão do piloto. CEFET/Ba Tecnologia Hidráulica 46 A válvula de retenção operada por piloto permite um fluxo livre da via de entrada para a via de saída igual a uma válvula de retenção comum. O fluido impelido a passar através da válvula, através da via de saída para a via de entrada, pressiona o assento contra a sua sede. O fluxo através da válvula é bloqueado. Quando uma pressão suficientemente alta age sobre o pistão do piloto, a haste avança e desloca o assento da sua sede. O fluxo pode passar através da válvula, da via de saída para a via de entrada, desde que a pressão no piloto seja suficiente para manter o pistão da haste acionado. Válvula de Retenção Operada por Piloto no Circuito Com uma válvula de retenção operada por piloto bloqueando a passagem de fluxo na saída "B" do cilindro, a carga ficará estacionária enquanto a vedação no cilindro for efetiva. Quando chegar o momento de baixar a carga, a pressão do sistema é aplicada ao pistão através da linha "A". A pressão do piloto para operar a válvula de retenção é tomada da linha "A" do cilindro. A válvula de retenção permanecerá aberta enquanto houver pressão suficiente na linha "A". Para descarga, o fluxo de fluido pode passar pela válvula com facilidade porque esta é a direção de fluxo da válvula. CEFET/Ba Tecnologia Hidráulica 47 Válvula de retenção dupla Esta válvula caracteriza em sua construção, na montagem em conjunto, por duas válvulas de retenção operadas por piloto em uma única carcaça, sendo que o pistão de comando trabalha entre duas retenções simples. No sentido de A1 para B1 e de A2 para B2 o fluxo é livre. De A1 para A2 e de B1 para B2, o fluxo está bloqueado. Se a válvula receber o fluxo de A1 para B1, o pistão de comando é deslocado para a direita e empurra o cone do assento da válvula de retenção B. Desta forma o fluxo de B2 para A2 é liberado. O princípio de funcionamento se repete quando o fluxo tem sentido de A2 para B2 CEFET/Ba Tecnologia Hidráulica 50 Com a válvula limitadora de pressão ajustada a 35 kgf/cm2, a bomba tenta mandar seus 20 litros/min de fluxo através do orifício. Devido ao tamanho da abertura do orifício, somente 8 litros/min passam através do orifício antes que a pressão atinja a regulagem de 35 kgf/cm2 na válvula limitadora de pressão (isso, é claro, acontece instantaneamente). 8 litros/min passam através do orifício e saem para o atuador. 12 litros/min avançam sobre a válvula limitadora de pressão e a haste do pistão se move a uma taxa de 400 cm/min. Se uma válvula controladora de vazão variável fosse usada no mesmo circuito, a velocidade da haste poderia ser modificada facilmente. Válvula reguladora de fluxo unidirecional Consiste em uma válvula controladora de vazão descrita anteriormente e mais a função de uma válvula de retenção simples em by pass. Com essa combinação é possível obter fluxo reverso livre, sendo de grande aplicação na hidráulica industrial. Através de um parafuso de ajuste determina-se a taxa de fluxo que deve ser requerida no sistema para se obter a velocidade desejada. Quanto à posição de instalação, está em função do tipo de controle que se deseja aplicar no sistema. Métodos de Controle Basicamente temos três maneiras de se aplicarem válvulas controladoras de vazão, sendo as duas primeiras com retenção integrada, e na terceira não se faz necessário o uso da retenção. 1º Método - Meter-In Meter-in significa controle na entrada. Nesta operação a válvula deverá ser instalada no atuador, de maneira que a retenção impeça a passagem do fluido, obrigando o mesmo a passar através do orifício controlado para a entrada da câmara do atuador. Este método é bem preciso e utilizado em aplicações onde a carga sempre resiste ao movimento do atuador, em casos onde se deve empurrar uma carga com velocidade controlada ou levantar uma carga com o cilindro instalado na vertical. CEFET/Ba Tecnologia Hidráulica 51 2º Método - Meter-Out Meter-out significa controle na saída. Nesta operação a válvula deverá ser instalada no atuador de maneira que a retenção impeça a saída do fluido da câmara do atuador obrigando o mesmo a passar através do orifício controlado. Este método é muito utilizado em sistemas onde a carga tende a fugir do atuador ou deslocar- se na mesma direção, como ocorre nos processos de furação (usinagem). CEFET/Ba Tecnologia Hidráulica 52 Válvula Controladora de Vazão com Pressão Compensada Qualquer modificação na pressão antes ou depois de um orifício de medição afeta o fluxo através do orifício, resultando numa mudança de velocidade do atuador. Estas modificações de pressão devem ser neutralizadas, ou compensadas, antes que um orifício possa medir o fluido com precisão. As válvulas controladoras de fluxo são válvulas não compensadas. Elas são bons instrumentos de medição, desde que o diferencial de pressão através da válvula permaneça constante. Se houver necessidade de uma medição mais precisa, usa-se uma válvula de fluxo compensada, isto é, um controle de fluxo que permite a variação de pressão antes ou depois do orifício. As válvulas controladoras de vazão com pressão compensada são classificadas como do tipo restritora ou by pass. Tipo Restritora Uma válvula controladora de vazão com pressão compensada tipo restritora consiste de um corpo de válvula com vias de entrada e de saída, uma válvula controladora de vazão variável, um êmbolo de compensação e uma mola que comprime o êmbolo. Funcionamento Para determinar como uma válvula tipo restritora funciona, devemos examinar a sua operação passo a passo. Com o êmbolo de compensação totalmente voltado para o lado esquerdo, qualquer fluxo de fluido pressurizado que entre na via de entrada chegará à válvula controladora de vazão variável. Com o êmbolo um pouco deslocado para o lado direito, o fluxo de fluido pressurizado é bloqueado através da válvula. Para manter o curso de fluxo através da válvula aberta, uma mola comprime o êmbolo do compensador em direção ao lado esquerdo. A pressão antes da válvula controladora de vazão variável é transmitida ao lado esquerdo do êmbolo por meio de uma passagem piloto interna. Quando a pressão do fluido, neste ponto, tentar se tornar maior do que a pressão da mola, o êmbolo se moverá em direção do lado direito. Com o orifício da válvula controladora de vazão variável ajustado para um pouco menos do que o fluxo da bomba a pressão antes da válvula tenta alcançar a da regulagem da válvula limitadora de pressão. Quando a pressão tenta subir acima do valor da mola do compensador, o êmbolo se movimenta e restringe o fluxo para a válvula controladora de vazão variável. Enquanto o fluido passa sobre esta restrição, toda a energia de pressão em excesso do valor da mola é transmitida em calor. Por exemplo, se a mola tivesse um valor de 7 kgf/cm2 e a válvula limitadora de pressão estivesse regulada a 35 kgf/cm2, a pressão do fluido na entrada da válvula seria de 35 kgf/cm2. Entretanto, o êmbolo compensador reduz a pressão antes que ela chegue à CEFET/Ba Tecnologia Hidráulica 55 Guarnições Para uma operação apropriada, uma vedação positiva deve existir em toda a extensão do pistão do cilindro, tanto quanto na haste. Os pistões do cilindro são vedados com as guarnições elásticas ou anéis de vedação de ferro fundido. Os anéis de pistão são duráveis mas permitem vazamento na ordem 15 a 45 cm3 por minuto em condições de operação normal. Guarnições tipo "U" elásticas não vazam em condições normais, mas são menos duráveis. As guarnições elásticas da haste são fornecidas em muitas variedades. Alguns cilindros são equipados com guarnições com formato em "V" ou em "U", fabricadas de couro, poliuretano, borracha nitrílica ou viton, e uma guarnição raspadora que previne a entrada de materiais estranhos no cilindro. Um tipo comum de guarnição elástica consiste de uma guarnição primária com a lateral dentada em formato de serra na parte interna. As serrilhas contatam a haste e continuamente raspam o fluido, limpando-a. Uma guarnição secundária retém todo o fluido da guarnição primária e ainda previne contra a entrada de sujeiras quando a haste recua. TIPOS DE CILINDROS Cilindro de simples - Um cilindro no qual a pressão de fluido é aplicada em somente uma direção para mover o pistão. Cilindro de simples ação e retorno por mola - um cilindro no qual uma mola recua o conjunto do pistão. CEFET/Ba Tecnologia Hidráulica 56 Cilindro de simples ação e retorno pela força da carga - um cilindro no qual uma força externa recua o conjunto do pistão. Cilindro de dupla ação - Um cilindro no qual a pressão do fluido é aplicada ao elemento móvel em qualquer uma das direções. CEFET/Ba Tecnologia Hidráulica 57 Cilindro de dupla ação com amortecimento de fim de curso Choque Hidráulico Quando a energia de trabalho hidráulica que está movendo um cilindro encontra um obstáculo (como o final de curso de um pistão), a inércia do líquido do sistema é transformada em choque ou batida, denominada de choque hidráulico. Se uma quantidade substancial de energia é estancada, o choque pode causar dano ao cilindro. Amortecimentos Para proteger os cilindros contra choques excessivos, os mesmos podem ser protegidos por amortecimentos. O amortecimento diminui o movimento do cilindro antes que chegue ao fim do curso. Os amortecimentos podem ser instalados em ambos os lados de um cilindro. CEFET/Ba Tecnologia Hidráulica Linha sob carga o Motor rotativo, deslocamento fixo Plugue ou conexão bloqueada Motor rotativo, deslocamento variável Restrição fixa o Motor reversível, dois sentidos de fluxo Restrição variável Motor oscilante Bomba simples, deslocamento fixo Í e Cilindro de simples ação com retração por mola Bomba simples, deslocamento variável ate Cilindro de ação simples com avanço por mola + 2 g Q Bomba reversível com dois sentidos de fluxo Cilindro de dupla ação 60 CEFET/Ba Tecnologia Hidráulica ! [ T 1 | Cilindro com haste Termômetro dupla ] ] Cilindro com dois Rotâmetro amortecedores fixos (medidor de fluxo) EI Cilindro com dois amortecedores Motor elétrico reguláveis Cilindro Acumulador telescópico por peso Eixo com rotação em Acumulador único sentido por mola Eixo com rotação nos dois sentidos (reversível) Acumulador por gás (genérico) EL => — —- 2 Manômetro DEP O DO Acumulador por gás com bexiga 61 CEFET/Ba Tecnologia Hidráulica Acumulador por gás com membrana Ay Pressostato Acumulador por gás Válvula de retenção sem mola introduzido ou dissipado) Intensificador de pressão Válvula agulha V 7 com pistão , Válvula de Filtro retenção com mola -—4 | ! Válvula de Aquecedor na linha retenção pilotada para abrir I 1 Regulador de Ls Válvula de temperai tação de retenção linhas de Tiro do 4 E pilotada para inhas de fluxo do fechar meio refrigerante Regulador de Li temperatura (as Válvula de setas indicam que o O É retenção dupla ou calor pode ser T 1 geminada 62
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved