Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Resumo Sistema Internacional, Resumos de Química

Sistema de medidas

Tipologia: Resumos

Antes de 2010

Compartilhado em 25/03/2009

adriana-bikis-8
adriana-bikis-8 🇧🇷

4 documentos

Pré-visualização parcial do texto

Baixe Resumo Sistema Internacional e outras Resumos em PDF para Química, somente na Docsity! S I Tradução da publicação do BIPM Resumo do Sistema Internacional de Unidades - SI A metrologia é a ciência da medição, abrangendo todas as medições realizadas num nível conhecido de incerteza, em qualquer domínio da atividade humana. O protótipo internacional do quilograma, К, o único padrão materializado, ainda em uso, para definir uma unidade de base do SI. O Bureau Internacional de Pesos e Medidas, o BIPM, foi criado pelo artigo 1o da Convenção do Metro, no dia 20 de maio de 1875, com a responsabilidade de estabelecer os fundamentos de um sistema de medições, único e coerente, com abrangência mundial. O sistema métrico decimal, que teve origem na época da Revolução Francesa, tinha por base o metro e o quilograma. Pelos termos da Convenção do Metro, assinada em 1875, os novos protótipos internacionais do metro e do quilograma foram fabricados e formalmente adotados pela primeira Conferência Geral de Pesos e Medidas (CGPM), em 1889. Este sistema evoluiu ao longo do tempo e inclui, atualmente, sete unidades de base. Em 1960, a 11a CGPM decidiu que este sistema deveria ser chamado de Sistema Internacional de Unidades, SI (Système international d’unités, SI). O SI não é estático, mas evolui de modo a acompanhar as crescentes exigências mundiais demandadas pelas medições, em todos os níveis de precisão, em todos os campos da ciência, da tecnologia e das atividades humanas. Este documento é um resumo da publicação do SI, uma publicação oficial do BIPM que é uma declaração do status corrente do SI. As sete unidades de base do SI, listadas na tabela 1, fornecem as referências que permitem definir todas as unidades de medida do Sistema Internacional. Com o progresso da ciência e com o aprimoramento dos métodos de medição, torna-se necessário revisar e aprimorar periodicamente as suas definições. Quanto mais exatas forem as medições, maior deve ser o cuidado para a realização das unidades de medida. Tabela 1 - As sete unidades de base do SI Grandeza Unidade, símbolo : definição da unidade comprimento metro, m : O metro é o comprimento do trajeto percorrido pela luz no vácuo durante um intervalo de tempo de 1/299 792 458 do segundo. Assim, a velocidade da luz no vácuo, c0, é exatamente igual a 299 792 458 m/s. massa quilograma, kg: O quilograma é a unidade de massa, igual à massa do protótipo internacional do quilograma. Assim, a massa do protótipo internacional do quilograma, m(К), é exatamente igual a 1kg. tempo segundo, s: O segundo é a duração de 9 192 631 770 períodos da radiação correspondente à transição entre os dois níveis hiperfinos do estado fundamental do átomo de césio 133. Assim, a freqüência da transição hiperfina do estado fundamental do átomo de césio 133, ν(hfs Cs), é exatamente igual a 9 192 631 770 Hz. corrente elétrica ampere, A: O ampere1 é a intensidade de uma corrente elétrica constante que, mantida em dois condutores paralelos, retilíneos, de comprimento infinito, de seção circular desprezível, e situados à distância de 1 metro entre si, no vácuo, produziria entre estes condutores uma força igual a 2 × 10-7 newton por metro de comprimento. Assim, a constante magnética, μ0 , também conhecida como permeabilidade do vácuo, é exatamente igual a 4π × 10-7 H/m. temperatura termodinâmica kelvin, K: O kelvin, unidade de temperatura termodinâmica, é a fração 1/273,16 da temperatura termodinâmica no ponto tríplice da água. Assim, a temperatura do ponto tríplice da água, Tpta, é exatamente igual a 273,16 K. quantidade de substância mol, mol: 1. O mol é a quantidade de substância de um sistema contendo tantas entidades elementares quantos átomos existem em 0,012 quilograma de carbono 12. 2. Quando se utiliza o mol, as entidades elementares devem ser especificadas, podendo ser átomos, moléculas, íons, elétrons, assim como outras partículas, ou agrupamentos especificados dessas partículas. Assim, a massa molar do carbono 12, M(12C), é exatamente igual a 12 g/mol. intensidade luminosa candela, cd: A candela é a intensidade luminosa, numa dada direção, de uma fonte que emite uma radiação monocromática de freqüência 540 × 1012 hertz e cuja intensidade energética nessa direção é 1/683 watt por esterradiano. Assim, a eficácia luminosa espectral, K, da radiação monocromática de freqüência 540 × 1012 Hz é exatamente igual a 683 lm/W. As sete grandezas de base, que correspondem às sete unidades de base, são: comprimento, massa, tempo, corrente elétrica, temperatura termodinâmica, quantidade de substância e intensidade luminosa. As grandezas de base e as unidades de base se encontram listadas, juntamente com seus símbolos, na tabela 2. 1 Nota dos tradutores. A palavra ampere era grafada antigamente com o acento grave no primeiro e – ampère. Modernamente essa prática foi abandonada conforme explica Antonio Houaiss em seu Dicionário. (HOUAISS, Antônio; VILLAR, Mauro de Salles. Dicionário Houaiss da Língua Portuguesa. 1. ed. Rio de Janeiro: Editora Objetiva Ltda. 2001, p. 196) 2 As grandezas adimensionais, também chamadas de grandezas de dimensão um, são usualmente definidas como a razão entre duas grandezas de mesma natureza (por exemplo, o índice de refração é a razão entre duas velocidades, e a permeabilidade relativa é a razão entre a permeabilidade de um meio dielétrico e a do vácuo). Então a unidade de uma grandeza adimensional é a razão entre duas unidades idênticas do SI, portanto é sempre igual a um (1). Contudo, ao se expressar os valores de grandezas adimensionais, a unidade um (1) não é escrita. Múltiplos e submúltiplos das unidades do SI Um conjunto de prefixos foi adotado para uso com as unidades do SI, a fim de exprimir os valores de grandezas que são muito maiores ou muito menores do que a unidade SI usada sem um prefixo. Os prefixos SI estão listados na tabela 5. Eles podem ser usados com qualquer unidade de base e com as unidades derivadas com nomes especiais. Tabela 5 - Prefixos SI Fator Nome Símbolo Fator Nome Símbolo 101 deca da 10-1 deci d 102 hecto h 10-2 centi c 103 quilo k 10-3 mili m 106 mega M 10-6 micro µ 109 giga G 10-9 nano n 1012 tera T 10-12 pico p 1015 peta P 10-15 femto f 1018 exa E 10-18 atto a 1021 zetta Z 10-21 zepto z 1024 yotta Y 10-24 yocto y Quando os prefixos são usados, o nome do prefixo e o da unidade são combinados para formar uma palavra única e, similarmente, o símbolo do prefixo e o símbolo da unidade são escritos sem espaços, para formar um símbolo único que pode ser elevado a qualquer potência. Por exemplo, pode-se escrever: quilômetro, km; microvolt, µV; femtosegundo, fs; 50 V/cm = 50 V(10-2 m)-1 = 5000 V/m. Quando as unidades de base e as unidades derivadas são usadas sem qualquer prefixo, o conjunto de unidades resultante é considerado coerente. O uso de um conjunto de unidades coerentes tem vantagens técnicas (veja a publicação completa do SI). Contudo, o uso dos prefixos é conveniente porque ele evita a necessidade de empregar fatores de 10n, para exprimir os valores de grandezas muito grandes ou muito pequenas. Por exemplo, o comprimento de uma ligação química é mais convenientemente expresso em nanometros, nm, do que em metros, m, e a distância entre Londres e Paris é mais convenientemente expressa em quilômetros, km, do que em metros, m. O quilograma, kg, é uma exceção, porque embora ele seja uma unidade de base o nome já inclui um prefixo, por razões históricas. Os múltiplos e os submúltiplos do quilograma são escritos combinando-se os prefixos com o grama: logo, escreve-se miligrama, mg, e não microquilograma, µkg. Unidades fora do SI O SI é o único sistema de unidades que é reconhecido universalmente, de modo que ele tem uma vantagem distinta quando se estabelece um diálogo internacional. Outras unidades, isto é, unidades 5 não-SI, são geralmente definidas em termos de unidades SI. O uso do SI também simplifica o ensino da ciência. Por todas essas razões o emprego das unidades SI é recomendado em todos os campos da ciência e da tecnologia. Embora algumas unidades não-SI sejam ainda amplamente usadas, outras, a exemplo do minuto, da hora e do dia, como unidades de tempo, serão sempre usadas porque elas estão arraigadas profundamente na nossa cultura. Outras são usadas, por razões históricas, para atender às necessidades de grupos com interesses especiais, ou porque não existe alternativa SI conveniente. Os cientistas devem ter a liberdade para utilizar unidades não-SI se eles as considerarem mais adequadas ao seu propósito. Contudo, quando unidades não-SI são utilizadas, o fator de conversão para o SI deve ser sempre incluído. Algumas unidades não-SI estão listadas na tabela 6 abaixo, com o seu fator de conversão para o SI. Para uma listagem mais ampla, veja a publicação completa do SI, ou o website do BIPM. Tabela 6 – Algumas unidades não-SI Grandeza Unidade Símbolo Relação com o SI tempo minuto min 1 min = 60 s hora h 1 h = 3600 s dia d 1 d = 86400 s volume litro L ou l 1 L = 1 dm3 massa tonelada t 1 t = 1000 kg energia elétronvolt eV 1 eV ≈ 1,602 x 10-19 J pressão bar bar 1 bar = 100 kPa milímetro de mercúrio mmHg 1 mmHg ≈133,3 Pa comprimento angstrom2 Å 1 Å = 10-10 m milha náutica M 1 M = 1852 m força dina dyn 1 dyn = 10-5 N energia erg erg 1 erg = 10-7 J Os símbolos das unidades começam com letra maiúscula quando se trata de nome próprio (por exemplo, ampere, A; kelvin, K; hertz, Hz; coulomb, C). Nos outros casos eles sempre começam com letra minúscula (por exemplo, metro, m; segundo, s; mol, mol). O símbolo do litro é uma exceção: pode-se usar uma letra minúscula ou uma letra maiúscula, L. Neste caso a letra maiúscula é usada para evitar confusão entre a letra minúscula l e o número um (1). O símbolo da milha náutica é apresentado aqui como M; contudo não há um acordo geral sobre nenhum símbolo para a milha náutica. A linguagem da ciência: utilização do SI para exprimir os valores das grandezas O valor de uma grandeza é escrito como o produto de um número e uma unidade, e o número que multiplica a unidade é o valor numérico da grandeza, naquela unidade. Deixa-se sempre um espaço entre o número e a unidade. Nas grandezas adimensionais para as quais a unidade é o número um (1), a unidade é omitida. O valor numérico depende da escolha da unidade, de modo que o mesmo valor de uma grandeza pode ter diferentes valores numéricos, quando expresso em diferentes unidades, conforme o seguinte exemplo: 2 O Dicionário Houaiss da Língua Portuguesa admite essa palavra grafada sem o símbolo sobre o “a” e sem o trema sobre o “o”. 6 A velocidade de uma bicicleta é aproximadamente υ = 5,0 m/s = 18 km/h. O comprimento de onda de uma das raias amarelas do sódio é λ = 5,896 × 10-7 m = 589,6 nm. Os símbolos das grandezas são impressos com letras em itálico (inclinadas) e geralmente são letras únicas do alfabeto latino ou do grego. Tanto letras maiúsculas como letras minúsculas podem ser usadas. Informação adicional sobre a grandeza pode ser acrescentada sob a forma de um subscrito, ou como informação entre parênteses. Existem símbolos recomendados para muitas grandezas, dados por autoridades como a ISO (International Organization for Standardization) e as várias organizações científicas internacionais, tais como a IUPAP (International Union of Pure and Applied Physics) e a IUPAC (International Union of Pure and Applied Chemistry). São exemplos: T para temperatura Cp para capacidade calorífica a pressão constante xi para fração molar da espécie i µr para permeabilidade relativa m(К) para a massa do protótipo internacional do quilograma, К. Os símbolos das unidades são impressos em tipo romano (vertical), independentemente do tipo usado no restante do texto. Eles são entidades matemáticas e não abreviaturas. Eles nunca são seguidos por um ponto (exceto no final de uma sentença) nem por um s para formar o plural. É obrigatório o uso da forma correta para os símbolos das unidades, conforme ilustrado pelos exemplos apresentados na publicação completa do SI. Algumas vezes os símbolos das unidades podem ter mais de uma letra. Eles são escritos em letras minúsculas, exceto que a primeira letra é maiúscula quando o nome é de uma pessoa. Contudo, quando o nome de uma unidade é escrito por extenso, deve começar com letra minúscula (exceto no início de uma sentença), para distinguir o nome da unidade do nome da pessoa. Ao se escrever o valor de uma grandeza, como o produto de um valor numérico e uma unidade, ambos, o número e a unidade devem ser tratados pelas regras ordinárias da álgebra. Por exemplo, a equação T = 293 K pode ser escrita igualmente T/K = 293. Este procedimento é descrito como o uso do cálculo de grandezas, ou a álgebra de grandezas. Às vezes essa notação é útil para identificar o cabeçalho de colunas de tabelas, ou a denominação dos eixos de gráficos, de modo que as entradas na tabela ou a identificação dos pontos sobre os eixos são simples números. O exemplo a seguir mostra uma tabela de pressão de vapor em função da temperatura, e o logaritmo da pressão de vapor em função do inverso da temperatura, com as colunas identificadas desse modo. T/K 103 K/T p/MPa ln(p/Mpa) 216,55 4,6179 0,5180 -0,6578 273,15 3,6610 3,4853 1,2486 304,19 3,2874 7,3815 1,9990 Algebricamente, fórmulas equivalentes podem ser usadas no lugar de 10³ K/T, tais como: kK/T, ou 10³ (T/K)-¹. Na formação de produtos ou quocientes de unidades, aplicam-se as regras normais da álgebra. Na formação de produtos de unidades, deve-se deixar um espaço entre as unidades (alternativamente pode-se colocar um ponto na meia altura da linha, como símbolo de multiplicação). Note a 7
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved