Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Funcionamento de Diodos Semicondutores: Estrutura, Polarização e Condução, Notas de estudo de Automação

Este documento explica o funcionamento de um diodo semicondutor, detalhando sua estrutura, como a região de transição, a diferença de potencial e a mobilidade de portadores. Além disso, discute os efeitos de polarização reversa e a produção de corrente de avalanche. O texto também aborda a importância da região de transição na condução e o papel do metal depositado sobre o material n.

Tipologia: Notas de estudo

Antes de 2010

Compartilhado em 19/05/2009

Pao_de_acucar
Pao_de_acucar 🇧🇷

4.5

(400)

853 documentos

1 / 21

Documentos relacionados


Pré-visualização parcial do texto

Baixe Funcionamento de Diodos Semicondutores: Estrutura, Polarização e Condução e outras Notas de estudo em PDF para Automação, somente na Docsity! 1. COMPONENTES SEMICONDUTORES RÁPIDOS DE POTÊNCIA 1. Diodos de Potência Um diodo semicondutor é uma estrutura P-N que, dentro de seus limites de tensão e de corrente, permite a passagem de corrente em um único sentido. Detalhes de funcionamento, em geral desprezados para diodos de sinal, podem ser significativos para componentes de maior potência, caracterizados por uma maior área (para permitir maiores correntes) e maior comprimento (a fim de suportar tensões mais elevadas). A figura 1.1 mostra, simplificadamente, a estrutura interna de um diodo. Figura 1.1. Estrutura básica de um diodo semicondutor Aplicando-se uma tensão entre as regiões P e N, a diferença de potencial aparecerá na região de transição, uma vez que a resistência desta parte do semicondutor é muito maior que a do restante do componente (devido à concentração de portadores). Quando se polariza reversamente um diodo, ou seja, se aplica uma tensão negativa no anodo (região P) e positiva no catodo (região N), mais portadores positivos (lacunas) migram para o lado N, e vice-versa, de modo que a largura da região de transição aumenta, elevando a barreira de potencial. Por difusão ou efeito térmico, uma certa quantidade de portadores minoritários penetra na região de transição. São, então, acelerados pelo campo elétrico, indo até a outra região neutra do dispositivo. Esta corrente reversa independe da tensão reversa aplicada, variando, basicamente, com a temperatura. Se o campo elétrico na região de transição for muito intenso, os portadores em trânsito obterão grande velocidade e, ao se chocarem com átomos da estrutura, produzirão novos portadores, os quais, também acelerados, produzirão um efeito de avalanche. Dado o aumento na corrente, sem redução significativa na tensão na junção, produz-se um pico de potência que destrói o componente. Uma polarização direta leva ao estreitamento da região de transição e à redução da barreira de potencial. Quando a tensão aplicada superar o valor natural da barreira, cerca de 0,7V para diodos de Si, os portadores negativos do lado N serão atraídos pelo potencial positivo do anodo e vice-versa, levando o componente à condução. Na verdade, a estrutura interna de um diodo de potência é um pouco diferente desta apresentada. Existe uma região N intermediária, com baixa dopagem. O papel desta região é permitir ao componente suportar tensões mais elevadas, pois tornará menor o campo elétrico na região de transição (que será mais larga, para manter o equilíbrio de carga). Esta região de pequena densidade de dopante dará ao diodo uma significativa característica resistiva quando em condução, a qual se torna mais significativa quanto maior for a tensão suportável pelo componente. As camadas que fazem os contatos externos são altamente dopadas, a fim de fazer com que se obtenha um contato com característica ôhmica e não semi-condutor (como se verá adiante nos diodos Schottky). O contorno arredondado entre as regiões de anodo e catodo tem como função criar campos elétricos mais suaves (evitando o efeito de pontas). No estado bloqueado, pode-se analisar a região de transição como um capacitor, cuja carga é aquela presente na própria região de transição. Na condução não existe tal carga, no entanto, devido à alta dopagem da camada P+, por difusão, existe uma penetração de lacunas na região N-. Além disso, à medida que cresce a corrente, mais lacunas são injetadas na região N-, fazendo com que elétrons venham da região N+ para manter a neutralidade de carga. Desta forma, cria-se uma carga espacial no catodo, a qual terá que ser removida (ou se recombinar) para permitir a passagem para o estado bloqueado do diodo. O comportamento dinâmico de um diodo de potência é, na verdade, muito diferente do de uma chave ideal, como se pode observar na figura 1.2. Suponha-se que se aplica uma tensão vi ao diodo, alimentando uma carga resistiva (cargas diferentes poderão alterar alguns aspectos da forma de onda). Durante t1, remove-se a carga acumulada na região de transição. Como ainda não houve significativa injeção de portadores, a resistência da região N- é elevada, produzindo um pico de tensão. Indutâncias parasitas do componente e das conexões também colaboram com a sobre-tensão. Durante t2 tem-se a chegada dos portadores e a redução da tensão para cerca de 1V. Estes tempos são, tipicamente, da ordem de centenas de ns. No desligamento, a carga espacial presente na região N- deve ser removida antes que se possa reiniciar a formação da barreira de potencial na junção. Enquanto houver portadores transitando, o diodo se mantém em condução. A redução em Von se deve à diminuição da queda ôhmica. Quando a corrente atinge seu pico negativo é que foi retirado o excesso de portadores, iniciando-se, então, o bloqueio do diodo. A taxa de variação da corrente, associada às indutâncias do circuito, provoca uma sobre-tensão negativa. No caso NPN, os elétrons são atraídos do emissor pelo potencial positivo da base. Esta camada central é suficientemente fina para que a maior parte dos portadores tenha energia cinética suficiente para atravessá-la, chegando à região de transição de J2, sendo, então, atraídos pelo potencial positivo do coletor. O controle de Vbe determina a corrente de base, Ib, que, por sua vez, se relaciona com Ic pelo ganho de corrente do dispositivo. Na realidade, a estrutura interna dos TBPs é diferente. Para suportar tensões elevadas, existe uma camada intermediária do coletor, com baixa dopagem, a qual define a tensão de bloqueio do componente. A figura 1.5. mostra uma estrutura típica de um transistor bipolar de potência. As bordas arredondadas da região de emissor permitem uma homogenização do campo elétrico, necessária à manutenção de ligeiras polarizações reversas entre base e emissor. O TBP não sustenta tensão no sentido oposto porque a alta dopagem do emissor provoca a ruptura de J1 em baixas tensões (5 a 20V). Figura 1.5. Estrutura interna de TPB e seu símbolo O uso preferencial de TBP tipo NPN se deve às menores perdas em relação aos PNP, o que ocorre por causa da maior mobilidade dos elétrons em relação às lacunas, reduzindo, principalmente, os tempos de comutação do componente. 1. Limites de tensão A tensão aplicada ao transistor encontra-se praticamente toda sobre a junção J2 a qual, tipicamente, está reversamente polarizada. Existem limites suportáveis por esta junção, os quais dependem principalmente da forma como o comando de base está operando, conforme se vê nas figuras 1.6 e 1.7. Com o transistor conduzindo (Ib>0) e operando na região ativa, o limite de tensão Vce é Vces o qual, se atingido, leva o dispositivo a um fenômeno chamado de primeira ruptura. O processo de primeira ruptura ocorre quando, ao se elevar a tensão Vce, provoca-se um fenômeno de avalanche em J2. Este acontecimento não danifica, necessariamente, o dispositivo. Se, no entanto, a corrente Ic se concentrar em pequenas áreas, o sobre-aquecimento produzirá ainda mais portadores e destruirá o componente (segunda ruptura). Com o transistor desligado (Ib=0) a tensão que provoca a ruptura da junção J2 é maior, elevando-se ainda mais quando a corrente de base for negativa. Isto é uma indicação interessante que, para transistores submetidos a valores elevados de tensão, o estado desligado deve ser acompanhado de uma polarização negativa da base. Figura 1.6. Tipos de conexão do circuito de base e máximas tensões Vce. Figura 1.7 Característica estática de transistor bipolar. 1. Área de Operação Segura (AOS) A AOS representa a região do plano Vce x Ic dentro da qual o TBP pode operar sem se danificar. A figura 1.8 mostra uma forma típica de AOS. Figura 1.8. Aspecto típico de AOS de TBP A: Máxima corrente contínua de coletor B: Máxima potência dissipável (relacionada à temperatura na junção) C: Limite de segunda ruptura D: Máxima tensão Vce À medida que a corrente se apresenta em pulsos (não-repetitivos) a área se expande. Para pulsos repetitivos deve-se analisar o comportamento térmico do componente para se saber se é possível utilizá-lo numa dada aplicação, uma vez que a AOS, por ser definida para um único pulso, é uma restrição mais branda. Esta análise térmica é feita com base no ciclo de trabalho a que o dispositivo está sujeito, aos valores de tensão e corrente e à impedância térmica do transistor, a qual é fornecida pelo fabricante. 1. Região de quase-saturação Consideremos o circuito mostrado na figura 1.9, e as curvas estáticas do TBP alí indicadas. Quando Ic cresce, Vce diminui, dada a maior queda de tensão sobre R. À medida que Vce se reduz, caminha-se no sentido da saturação. Os TBP apresentam uma região chamada de quase-saturação gerada, principalmente, pela presença da camada N- do coletor. À semelhança da carga espacial armazenada nos diodos, nos transistores bipolares também ocorre estocagem de carga. A figura 1.10 mostra a distribuição de carga estática no interior do transistor para as diferentes regiões de operação. Como a carga é resistiva, uma variação de Ic provoca uma mudança em Vce. Figura 1.12 Característica típica de chaveamento de carga resistiva ts: tempo de armazenamento Intervalo necessário para retirar (Ib<0) e/ou neutralizar os portadores estocados no coletor e na base tfi: tempo de queda da corrente de coletor Corresponde ao processo de bloqueio do TBP, com a travessia da região ativa, da saturação para o corte. A redução de Ic depende de fatores internos ao componente, como o tempo de recombinação, e de fatores externos, como o valor de Ib (negativo). Para obter um desligamento rápido deve-se evitar operar com o componente além da quase- saturação, de modo a tornar breve o tempo de armazenamento. b) Carga indutiva Seja Io>0 e constante durante a comutação. A figura 1.13 mostra formas de onda típicas com este tipo de carga. b.1) Entrada em condução Com o TBP cortado, Io circula pelo diodo (=> Vce=Vcc). Após td, Ic começa a crescer, reduzindo Id (pois Io é constante). Quando Ic=Io, o diodo desliga e Vce começa a diminuir. Além disso, pelo transistor circula a corrente reversa do diodo. b.2) Bloqueio Com a inversão da tensão Vbe (e de Ib), inicia-se o processo de desligamento do TBP. Após tsv começa a crescer Vce. Para que o diodo conduza é preciso que Vce>Vcc. Enquanto isto não ocorre, Ic=Io. Com a entrada em condução do diodo, Ic diminui, à medida que Id cresce (tfi). Além destes tempos definem-se outros para carga indutiva: tti: (tail time): Queda de Ic de 10% a 2% tc ou txo: intervalo entre 10% de Vce e 10% de Ic Figura 1.13. Formas de onda com carga indutiva 1. Circuitos amaciadores (ou de ajuda à comutação) - "snubber" O papel dos circuitos amaciadores é garantir a operação do TBP dentro da AOS, especialmente durante o chaveamento de cargas indutivas. a) Desligamento - Objetivo: atrasar o crescimento de Vce (figura 1.14) Quando Vce começa a crescer, o capacitor Cs começa a se carregar (via Ds), desviando parcialmente a corrente, reduzindo Ic. Df só conduzirá quando Vce>Vcc. Quando o transistor ligar o capacitor se descarregará por ele, com a corrente limitada por Rs. A energia acumulada em Cs será, então, dissipada sobre Rs. Sejam as formas de onda mostradas na figura 1.15. Considerando que Ic caia linearmente e que IL é constante, a corrente por Cs cresce linearmente. Fazendo-se com que Cs complete sua carga quando Ic=0, o pico de potência se reduzirá a menos de 1/4 do seu valor sem circuito amaciador (supondo trv=0) Figura 1.14. Circuito amaciador de desligamento e trajetórias na AOS Figura 1.15. Formas de onda no desligamente sem e com o circuito amaciador. O valor de Rs deve ser tal que permita toda a descarga de Cs durante o mínimo tempo ligado do TBP e, por outro lado, limite o pico de corrente em um valor inferior à máxima corrente de pico repetitiva do componente. Deve-se usar o maior Rs possível. b) Entrada em condução: Objetivo: reduzir Vce e atrasar o aumento de Ic (figura 1.16) No circuito sem amaciador, após o disparo do TBP, Ic cresce, mas Vce só se reduz quando Df deixar de conduzir. A colocação de Ls provoca uma redução de Vce, além de reduzir a taxa de crescimento de Ic. Figura 1.20 Forma de onda de corrente de base recomendada para acionamento de TBP. As transições devem ser rápidas, para reduzir os tempo de atraso. Um valor elevado Ib1 permite uma redução de tri. Quando em condução, Ib2 deve ter tal valor que faça o TBP operar na região de quase-saturação. No desligamento, deve-se prover uma corrente negativa, acelerando assim a retirada dos portadores armazenados. Para o acionamento de um transistor único, pode-se utilizar um arranjo de diodos para evitar a saturação, como mostrado na figura 1.21. Neste arranjo, a tensão mínima na junção B-C é zero. Excesso na corrente Ib é desviado por D1. D3 permite a circulação de corrente negativa na base. Figura 1.21. Arranjo de diodos para evitar saturação. 1. MOSFET 2. Princípio de funcionamento (canal N) O terminal de gate é isolado do semicondutor por SiO2. A junção PN- define um diodo entre Source e Drain, o qual conduz quando Vds<0. A operação como transistor ocorre quando Vds>0. A figura 1.22 mostra a estrutura básica do transistor. Quando uma tensão Vgs>0 é aplicada, o potencial positivo no gate repele as lacunas na região P, deixando uma carga negativa, mas sem portadores livres. Quando esta tensão atinge um certo limiar (Vth), elétrons livres (gerados principalmente por efeito térmico) presentes na região P são atraídos e formam um canal N dentro da região P, pelo qual torna-se possível a passagem de corrente entre D e S. Elevando Vgs, mais portadores são atraídos, ampliando o canal, reduzindo sua resistência (Rds), permitindo o aumento de Id. Este comportamento caracteriza a chamada "região resistiva". Figura 1.22. Estrutura básica de transistor MOSFET. A passagem de Id pelo canal produz uma queda de tensão que leva ao seu afunilamento, ou seja, o canal é mais largo na fronteira com a região N+ do que quando se liga à região N-. Um aumento de Id leva a uma maior queda de tensão no canal e a um maior afunilamento, o que conduziria ao seu colapso e à extinÁão da corrente! Obviamente o fenômeno tende a um ponto de equilíbrio, no qual a corrente Id se mantém constante para qualquer Vds, caracterizando a região ativa do MOSFET. A figura 1.23 mostra a característica estática do MOSFET, Uma pequena corrente de gate é necessária apenas para carregar e descarregar as capacitâncias de entrada do transistor. A resistência de entrada é da ordem de 1012 ohms. Estes transistores, em geral, são de canal N por apresentarem menores perdas e maior velocidade de comutação, devido à maior mobilidade dos elétrons em relação às lacunas. A máxima tensão Vds é determinada pela ruptura do diodo reverso. Os MOSFETs não apresentam segunda ruptura uma vez que a resistência do canal aumenta com o crescimento de Id. Este fato facilita a associação em paralelo destes componentes. A tensão Vgs é limitada a algumas dezenas de volts, por causa da capacidade de isolação da camada de SiO2. Figura 1.23. Característica estática do MOSFET. 1. Área de Operação Segura A figura 1.24 mostra a AOS dos MOSFET. Para tensões elevadas ela é mais ampla que para um TBP equivalente, uma vez que não existe o fenômeno de segunda ruptura. Para baixas tensões, entretanto, tem-se a limitação da resistência de condução. A: Máxima corrente de dreno contínua B: Limite da região de resistência constante C: Máxima potência (relacionada à máxima temperatura de junção) D: Máxima tensão Vds Figura 1.24. AOS para MOSFET. 1. Característica de chaveamento - carga indutiva a) Entrada em condução (figura 1.25) Ao ser aplicada a tensão de acionamento (Vgg), a capacitância de entrada começa a se carregar, com a corrente limitada por Rg. Quando se atinge a tensão limiar de condução (Vth), após td, começa a relaciona-se à região do gate do tiristor parasita. Os modernos componentes não apresentam problemas relativos a este elemento indesejado. Figura 1.27. Estrutura básica de IGBT. 1. Características de chaveamento A entrada em condução é similar ao MOSFET, sendo um pouco mais lenta a queda da tensão Vce, uma vez que isto depende da chegada dos portadores vindos da região P+. Para o desligamento, no entanto, tais portadores devem ser retirados. Nos TBPs isto se dá pela drenagem dos portadores via base, o que não é possível nos IGBTs, devido ao acionamento isolado. A solução encontrada foi a inclusão de uma camada N+, na qual a taxa de recombinação é bastante mais elevada do que na região N-. Desta forma, as lacunas presentes em N+ recombinam-se com muita rapidez, fazendo com que, por difusão, as lacunas existentes na região N- refluam, apressando a extinção da carga acumulada na região N-, possibllitando o restabelecimento da barreira de potencial e o bloqueio do componente. 1. Alguns Critérios de Seleção Um primeiro critério é o dos limites de tensão e de corrente. Os MOSFET possuem uma faixa mais reduzida de valores, ficando, tipicamente entre: 100V/200A e 1000V/20A. Já os TBP e IGBT atingem potências mais elevadas, indo até 1200V/500A. Como o acionamento do IGBT é muito mais fácil do que o do TBP, seu uso tem sido crescente, em detrimento dos TBP. Outro importante critério para a seleção refere-se às perdas de potência no componente. Assim, aplicações em alta freqüência (acima de 50kHz) devem ser utilizados MOSFETs. Em freqüências mais baixas, qualquer dos 3 componentes podem responder satisfatoriamente. No entanto, as perdas em condução dos TBPs e dos IGBTs são sensivelmente menores que as dos MOSFET. Como regra básica: em alta freqüência: MOSFET em baixa freqüência: IGBT
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved