Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

CARVALHO, Daniel Balparda de - Apostila de Linguagem C, Notas de estudo de Engenharia Civil

Apostila Programação - Linguagem C

Tipologia: Notas de estudo

Antes de 2010

Compartilhado em 18/03/2007

silmar-crepaldi-6
silmar-crepaldi-6 🇧🇷

4

(1)

3 documentos

Pré-visualização parcial do texto

Baixe CARVALHO, Daniel Balparda de - Apostila de Linguagem C e outras Notas de estudo em PDF para Engenharia Civil, somente na Docsity! 1 APOSTILA DE LINGUAGEM C 1997 – Daniel Balparda de Carvalho Engenharia Elétrica - UFMG Nenhuma parte deste material pode ser reproduzida ou transmitida de qualquer modo ou por qualquer meio, sem prévia autorização do autor e sem lhe ser dado o devido crédito. 2 Sumário 1 - INTRODUÇÃO .................................................................................................................................................. 5 2 - Primeiros Passos .............................................................................................................................................. 6 O C é "Case Sensitive".......................................................................................................................................... 6 Introdução às Funções........................................................................................................................................... 8 Introdução Básica às Entradas e Saídas .............................................................................................................. 11 Introdução a Alguns Comandos de Controle de Fluxo ....................................................................................... 15 Palavras Reservadas do C ................................................................................................................................... 18 3 - VARIÁVEIS, CONSTANTES, OPERADORES E EXPRESSÕES .......................................................... 19 Nomes de Variáveis ............................................................................................................................................ 19 Dicas quanto aos nomes de variáveis... .............................................................................................................. 19 Os Tipos do C ..................................................................................................................................................... 19 Declaração e Inicialização de Variáveis.............................................................................................................. 20 Operadores Aritméticos e de Atribuição............................................................................................................. 24 Operadores Relacionais e Lógicos ...................................................................................................................... 26 - Operadores Lógicos Bit a Bit............................................................................................................................ 28 Expressões........................................................................................................................................................... 28 - Expressões que Podem ser Abreviadas............................................................................................................. 29 - Tabela de Precedências do C ............................................................................................................................ 30 Modeladores (Casts) ........................................................................................................................................... 31 4 - ESTRUTURAS DE CONTROLE DE FLUXO ............................................................................................. 32 O Comando if...................................................................................................................................................... 32 - O Operador ?..................................................................................................................................................... 35 O Comando switch.............................................................................................................................................. 36 O Comando for.................................................................................................................................................... 38 O Comando while ............................................................................................................................................... 40 O Comando do-while .......................................................................................................................................... 41 O Comando break ............................................................................................................................................... 42 O Comando goto ................................................................................................................................................. 44 5 - MATRIZES E STRINGS .................................................................................................................................. 46 Vetores ................................................................................................................................................................ 46 Strings ................................................................................................................................................................. 47 Matrizes............................................................................................................................................................... 50 6 – PONTEIROS .................................................................................................................................................. 54 Declarando e Utilizando Ponteiros...................................................................................................................... 54 Ponteiros e Vetores ............................................................................................................................................. 57 Inicializando Ponteiros........................................................................................................................................ 61 Ponteiros para Ponteiros...................................................................................................................................... 62 Cuidados a Serem Tomados ao se Usar Ponteiros .............................................................................................. 63 7 –FUNÇÕES........................................................................................................................................................ 64 A Função............................................................................................................................................................. 64 O Comando return............................................................................................................................................... 64 Protótipos de Funções ......................................................................................................................................... 66 O Tipo void ......................................................................................................................................................... 67 Arquivos-Cabeçalhos .......................................................................................................................................... 68 Escopo de Variáveis............................................................................................................................................ 69 Passagem de parâmetros por valor e passagem por referência............................................................................ 72 Vetores como Argumentos de Funções............................................................................................................... 74 Os Argumentos argc e argv................................................................................................................................. 74 Recursividade...................................................................................................................................................... 75 Outras Questões .................................................................................................................................................. 76 8 - DIRETIVAS DE COMPILAÇÃO......................................................................................................................... 77 As Diretivas de Compilação................................................................................................................................ 77 A Diretiva include............................................................................................................................................... 77 As Diretivas define e undef................................................................................................................................. 77 As Diretivas ifdef e endif .................................................................................................................................... 80 A Diretiva ifndef ................................................................................................................................................. 80 A Diretiva if ........................................................................................................................................................ 80 A Diretiva else .................................................................................................................................................... 81 5 1 - INTRODUÇÃO Vamos, neste curso, aprender os conceitos básicos da linguagem de programação C a qual tem se tornado cada dia mais popular, devido à sua versatilidade e ao seu poder. Uma das grandes vantagens do C é que ele possui tanto características de "alto nível" quanto de "baixo nível". Apesar de ser bom, não é pré-requisito do curso um conhecimento anterior de linguagens de programação. É importante uma familiaridade com computadores. O que é importante é que você tenha vontade de aprender, dedicação ao curso e, caso esteja em uma das turmas do curso, acompanhe atentamente as discussões que ocorrem na lista de discussões do curso. O C nasceu na década de 70. Seu inventor, Dennis Ritchie, implementou-o pela primeira vez usando um DEC PDP-11 rodando o sistema operacional UNIX. O C é derivado de uma outra linguagem: o B, criado por Ken Thompson. O B, por sua vez, veio da linguagem BCPL, inventada por Martin Richards. O C é uma linguagem de programação genérica que é utilizada para a criação de programas diversos como processadores de texto, planilhas eletrônicas, sistemas operacionais, programas de comunicação, programas para a automação industrial, gerenciadores de bancos de dados, programas de projeto assistido por computador, programas para a solução de problemas da Engenharia, Física, Química e outras Ciências, etc ... É bem provável que o Navegador que você está usando para ler este texto tenha sido escrito em C ou C++. Estudaremos a estrutura do ANSI C, o C padronizado pela ANSI. Veremos ainda algumas funções comuns em compiladores para alguns sistemas operacionais. Quando não houver equivalentes para as funções em outros sistemas, apresentaremos formas alternativas de uso dos comandos. Sugerimos que o aluno realmente use o máximo possível dos exemplos, problemas e exercícios aqui apresentados, gerando os programas executáveis com o seu compilador. Quando utilizamos o compilador aprendemos a lidar com mensagens de aviso, mensagens de erro, bugs, etc. Apenas ler os exemplos não basta. O conhecimento de uma linguagem de programação transcende o conhecimento de estruturas e funções. O C exige, além do domínio da linguagem em si, uma familiaridade com o compilador e experiência em achar "bugs" nos programas. É importante então que o leitor digite, compile e execute os exemplos apresentados. 6 2 - Primeiros Passos O C é "Case Sensitive" Vamos começar o nosso curso ressaltando um ponto de suma importância: o C é "Case Sensitive", isto é, maiúsculas e minúsculas fazem diferença. Se declarar uma variável com o nome soma ela será diferente de Soma, SOMA, SoMa ou sOmA. Da mesma maneira, os comandos do C if e for, por exemplo, só podem ser escritos em minúsculas pois senão o compilador não irá interpretá-los como sendo comandos, mas sim como variáveis. Dois Primeiros Programas Vejamos um primeiro programa em C: #include <stdio.h> /* Um Primeiro Programa */ int main () { printf ("Ola! Eu estou vivo!\n"); return(0); } Compilando e executando este programa você verá que ele coloca a mensagem Ola! Eu estou vivo! na tela. Vamos analisar o programa por partes. A linha #include <stdio.h> diz ao compilador que ele deve incluir o arquivo- cabeçalho stdio.h. Neste arquivo existem declarações de funções úteis para entrada e saída de dados (std = standard, padrão em inglês; io = Input/Output, entrada e saída ==> stdio = Entrada e saída padronizadas). Toda vez que você quiser usar uma destas funções deve-se incluir este comando. O C possui diversos Arquivos-cabeçalho. Quando fazemos um programa, uma boa idéia é usar comentários que ajudem a elucidar o funcionamento do mesmo. No caso acima temos um comentário: /* Um Primeiro Programa */. O compilador C desconsidera qualquer coisa que esteja começando com /* e terminando com */. Um comentário pode, inclusive, ter mais de uma linha. A linha int main() indica que estamos definindo uma função de nome main. Todos os programas em C têm que ter uma função main, pois é esta função que será chamada quando o programa for executado. O conteúdo da função é delimitado por chaves { }. O código que estiver dentro das chaves será executado seqüencialmente quando a função for chamada. A palavra int indica que esta função retorna um inteiro. O que significa este retorno será visto posteriormente, quando estudarmos um pouco mais detalhadamente as funções do C. A última linha do programa, return(0); , indica o número inteiro que está sendo retornado pela função, no caso o número 0. 7 A única coisa que o programa realmente faz é chamar a função printf(), passando a string (uma string é uma seqüência de caracteres, como veremos brevemente) "Ola! Eu estou vivo!\n" como argumento. É por causa do uso da função printf() pelo programa que devemos incluir o arquivo- cabeçalho stdio.h . A função printf() neste caso irá apenas colocar a string na tela do computador. O \n é uma constante chamada de constante barra invertida. No caso, o \n é a constante barra invertida de "new line" e ele é interpretado como um comando de mudança de linha, isto é, após imprimir Ola! Eu estou vivo! o cursor passará para a próxima linha. É importante observar também que os comandos do C terminam com ; . Podemos agora tentar um programa mais complicado: #include <stdio.h> int main () { int Dias; /* Declaracao de Variaveis */ float Anos; printf ("Entre com o número de dias: "); /* Entrada de Dados */ scanf ("%d",&Dias); Anos=Dias/365.25; /* Conversao Dias->Anos */ printf ("\n\n%d dias equivalem a %f anos.\n",Dias,Anos); return(0); } Vamos entender como o programa acima funciona. São declaradas duas variáveis chamadas Dias e Anos. A primeira é um int (inteiro) e a segunda um float (ponto flutuante). As variáveis declaradas como ponto flutuante existem para armazenar números que possuem casas decimais, como 5,1497. É feita então uma chamada à função printf(), que coloca uma mensagem na tela. Queremos agora ler um dado que será fornecido pelo usuário e colocá-lo na variável inteira Dias. Para tanto usamos a função scanf(). A string "%d" diz à função que iremos ler um inteiro. O segundo parâmetro passado à função diz que o dado lido deverá ser armazenado na variável Dias. É importante ressaltar a necessidade de se colocar um & antes do nome da variável a ser lida quando se usa a função scanf(). O motivo disto só ficará claro mais tarde. Observe que, no C, quando temos mais de um parâmetro para uma função, eles serão separados por vírgula. Temos então uma expressão matemática simples que atribui a Anos o valor de Dias dividido por 365.25 (365.25 é uma constante ponto flutuante 365,25). Como Anos é uma variável float o compilador fará uma conversão automática entre os tipos das variáveis (veremos isto com detalhes mais tarde). A segunda chamada à função printf() tem três argumentos. A string "\n\n%d dias equivalem a %f anos.\n" diz à função para pular duas linhas, colocar um inteiro na tela, colocar a mensagem " dias equivalem a ", colocar um valor float na tela, colocar a mensagem " anos." e pular outra linha. Os outros parâmetros são as variáveis, Dias e Anos, das quais devem ser lidos os valores do inteiro e do float, respectivamente. 10 - Retornando valores Muitas vezes é necessário fazer com que uma função retorne um valor. As funções que vimos até aqui estavam retornando o número 0. Podemos especificar um tipo de retorno indicando-o antes do nome da função. Mas para dizer ao C o que vamos retornar precisamos da palavra reservada return. Sabendo disto fica fácil fazer uma função para multiplicar dois inteiros e que retorna o resultado da multiplicação. Veja: #include <stdio.h> int prod (int x,int y) { return (x*y); } int main () { int saida; saida=prod (12,7); printf ("A saida e: %d\n",saida); return(0); } Veja que, como prod retorna o valor de 12 multiplicado por 7, este valor pode ser usado em uma expressão qualquer. No programa fizemos a atribuição deste resultado à variável saida, que posteriormente foi impressa usando o printf. Uma observação adicional: se não especificarmos o tipo de retorno de uma função, o compilador C automaticamente suporá que este tipo é inteiro. Porém, não é uma boa prática não se especificar o valor de retorno e, neste curso, este valor será sempre especificado. Com relação à função main, o retorno sempre será inteiro. Normalmente faremos a função main retornar um zero quando ela é executada sem qualquer tipo de erro. Mais um exemplo de função, que agora recebe dois floats e também retorna um float:: #include <stdio.h> float prod (float x,float y) { return (x*y); } int main () { float saida; saida=prod (45.2,0.0067); printf ("A saida e: %f\n",saida); return(0); } 11 - Forma geral Apresentamos aqui a forma geral de uma função: tipo_de_retorno nome_da_função (lista_de_argumentos) { código_da_função } AUTO AVALIAÇÃO Veja como você está. Escreva uma função que some dois inteiros e retorne o valor da soma. Introdução Básica às Entradas e Saídas - Caracteres Os caracteres são um tipo de dado: o char. O C trata os caracteres ('a', 'b', 'x', etc ...) como sendo variáveis de um byte (8 bits). Um bit é a menor unidade de armazenamento de informações em um computador. Os inteiros (ints) têm um número maior de bytes. Dependendo da implementação do compilador, eles podem ter 2 bytes (16 bits) ou 4 bytes (32 bits). Isto será melhor explicado nas próximas aulas. Na linguagem C, também podemos usar um char para armazenar valores numéricos inteiros, além de usá-lo para armazenar caracteres de texto. Para indicar um caractere de texto usamos apóstrofes. Veja um exemplo de programa que usa caracteres: #include <stdio.h> int main () { char Ch; Ch='D'; printf ("%c",Ch); return(0); } No programa acima, %c indica que printf() deve colocar um caractere na tela. Como vimos anteriormente, um char também é usado para armazenar um número inteiro. Este número é conhecido como o código ASCII correspondente ao caractere. Veja o programa abaixo: #include <stdio.h> int main () { char Ch; Ch='D'; printf ("%d",Ch); /* Imprime o caracter como inteiro */ return(0); } Este programa vai imprimir o número 68 na tela, que é o código ASCII correspondente ao caractere 'D' (d maiúsculo). 12 Muitas vezes queremos ler um caractere fornecido pelo usuário. Para isto as funções mais usadas, quando se está trabalhando em ambiente DOS ou Windows, são getch() e getche(). Ambas retornam o caractere pressionado. getche() imprime o caractere na tela antes de retorná-lo e getch() apenas retorna o caractere pressionado sem imprimí-lo na tela. Ambas as funções podem ser encontradas no arquivo de cabeçalho conio.h. Geralmente estas funções não estão disponíveis em ambiente Unix (compiladores cc e gcc), pois não fazem parte do padrão ANSI. Podem ser substituídas pela função scanf(), porém sem as mesmas funcionalidades. Eis um exemplo que usa a função getch(), e seu correspondente em ambiente Unix: #include <stdio.h> #include <conio.h> /* Este programa usa conio.h . Se você não tiver a conio, ele não funcionará no Unix */ int main () { char Ch; Ch=getch(); printf ("Voce pressionou a tecla %c",Ch); return(0); } Equivalente ANSI-C para o ambiente Unix do programa acima, sem usar getch(): #include <stdio.h> int main () { char Ch; scanf("%c", &Ch); printf ("Voce pressionou a tecla %c",Ch); return(0); } A principal diferença da versão que utiliza getch() para a versão que não utiliza getch() é que no primeiro caso o usuário simplesmente aperta a tecla e o sistema lê diretamente a tecla pressionada. No segundo caso, é necessário apertar também a tecla <ENTER>. Lembre-se que, se você quiser manter a portabilidade de seus programas, não deve utilizar as funções getch e getche, pois estas não fazem parte do padrão ANSI C !!! - Strings No C uma string é um vetor de caracteres terminado com um caractere nulo. O caracter nulo é um caractere com valor inteiro igual a zero (código ASCII igual a 0). O terminador nulo também pode ser escrito usando a convenção de barra invertida do C como sendo '\0'. Embora o assunto vetores seja discutido posteriormente, veremos aqui os fundamentos necessários para que possamos utilizar as strings. Para declarar uma string, podemos usar o seguinte formato geral: char nome_da_string[tamanho]; Isto declara um vetor de caracteres (uma string) com número de posições igual a tamanho. Note que, como temos que reservar um caractere para ser o terminador nulo, 15 - scanf O formato geral da função scanf() é: scanf (string-de-controle,lista-de-argumentos); Usando a função scanf() podemos pedir dados ao usuário. Um exemplo de uso, pode ser visto acima. Mais uma vez, devemos ficar atentos a fim de colocar o mesmo número de argumentos que o de códigos de controle na string de controle. Outra coisa importante é lembrarmos de colocar o & antes das variáveis da lista de argumentos. É impossível justificar isto agora, mas veremos depois a razão para este procedimento. Maiores detalhes sobre a função scanf() serão vistos posteriormente, mas podem ser consultados de antemão pelos interessados. AUTO AVALIAÇÃO Veja como você está: a) Escreva um programa que leia um caracter digitado pelo usuário, imprima o caracter digitado e o código ASCII correspondente a este caracter. b) Escreva um programa que leia duas strings e as coloque na tela. Imprima também a segunda letra de cada string. Introdução a Alguns Comandos de Controle de Fluxo Os comandos de controle de fluxo são aqueles que permitem ao programador alterar a sequência de execução do programa. Vamos dar uma breve introdução a dois comandos de controle de fluxo. Outros comandos serão estudados posteriormente. - if O comando if representa uma tomada de decisão do tipo "SE isto ENTÃO aquilo". A sua forma geral é: if (condição) declaração; A condição do comando if é uma expressão que será avaliada. Se o resultado for zero a declaração não será executada. Se o resultado for qualquer coisa diferente de zero a declaração será executada. A declaração pode ser um bloco de código ou apenas um comando. É interessante notar que, no caso da declaração ser um bloco de código, não é necessário (e nem permitido) o uso do ; no final do bloco. Isto é uma regra geral para blocos de código. Abaixo apresentamos um exemplo: 16 #include <stdio.h> int main () { int num; printf ("Digite um numero: "); scanf ("%d",&num); if (num>10) printf ("\n\nO numero e maior que 10"); if (num==10) { printf ("\n\nVoce acertou!\n"); printf ("O numero e igual a 10."); } if (num<10) printf ("\n\nO numero e menor que 10"); return (0); } No programa acima a expressão num>10 é avaliada e retorna um valor diferente de zero, se verdadeira, e zero, se falsa. No exemplo, se num for maior que 10, será impressa a frase: "O número e maior que 10". Repare que, se o número for igual a 10, estamos executando dois comandos. Para que isto fosse possível, tivemos que agrupa- los em um bloco que se inicia logo após a comparação e termina após o segundo printf. Repare também que quando queremos testar igualdades usamos o operador == e não =. Isto porque o operador = representa apenas uma atribuição. Pode parecer estranho à primeira vista, mas se escrevêssemos if (num=10) ... /* Isto esta errado */ o compilador iria atribuir o valor 10 à variável num e a expressão num=10 iria retornar 10, fazendo com que o nosso valor de num fosse modificado e fazendo com que a declaração fosse executada sempre. Este problema gera erros frequentes entre iniciantes e, portanto, muita atenção deve ser tomada. Os operadores de comparação são: == (igual), != (diferente de), > (maior que), < (menor que), >= (maior ou igual), <= (menor ou igual). - for O loop (laço) for é usado para repetir um comando, ou bloco de comandos, diversas vezes, de maneira que se possa ter um bom controle sobre o loop. Sua forma geral é: for (inicialização;condição;incremento) declaração; A declaração no comando for também pode ser um bloco ({ } ) e neste caso o ; é omitido. O melhor modo de se entender o loop for é ver de que maneira ele funciona "por dentro". O loop for é equivalente a se fazer o seguinte: inicialização; if (condição) { declaração; incremento; "Volte para o comando if" } 17 Podemos ver que o for executa a inicialização incondicionalmente e testa a condição. Se a condição for falsa ele não faz mais nada. Se a condição for verdadeira ele executa a declaração, o incremento e volta a testar a condição. Ele fica repetindo estas operações até que a condição seja falsa. Abaixo vemos um programa que coloca os primeiros 100 números na tela: #include <stdio.h> int main () { int count; for (count=1;count<=100;count=count+1) printf ("%d ",count); return(0); } Outro exemplo interessante é mostrado a seguir: o programa lê uma string e conta quantos dos caracteres desta string são iguais à letra 'c' #include <stdio.h> int main () { char string[100]; /* String, ate' 99 caracteres */ int i, cont; printf("\n\nDigite uma frase: "); gets(string); /* Le a string */ printf("\n\nFrase digitada:\n%s", string); cont = 0; for (i=0; string[i] != '\0'; i=i+1) { if ( string[i] == 'c' ) /* Se for a letra 'c' */ cont = cont +1; /*Incrementa o contador de caracteres */ } printf("\nNumero de caracteres c = %d", cont); return(0); } Note o teste que está sendo feito no for: o caractere armazenado em string[i] é comparado com '\0' (caractere final da string). Caso o caractere seja diferente de '\0', a condição é verdadeira e o bloco do for é executado. Dentro do bloco existe um if que testa se o caractere é igual a 'c'. Caso seja, o contador de caracteres c é incrementado. Mais um exemplo, agora envolvendo caracteres: /* Este programa imprime o alfabeto: letras maiúsculas */ #include <stdio.h> int main() { char letra; for(letra = 'A' ; letra <= 'Z' ; letra =letra+1) printf("%c ", letra); } 20 Intervalo Tipo Num de bits Formato para leitura com scanf Inicio Fim char 8 %c -128 127 unsigned char 8 %c 0 255 signed char 8 %c -128 127 int 16 %i -32.768 32.767 unsigned int 16 %u 0 65.535 signed int 16 %i -32.768 32.767 short int 16 %hi -32.768 32.767 unsigned short int 16 %hu 0 65.535 signed short int 16 %hi -32.768 32.767 long int 32 %li -2.147.483.648 2.147.483.647 signed long int 32 %li -2.147.483.648 2.147.483.647 unsigned long int 32 %lu 0 4.294.967.295 float 32 %f 3,4E-38 3.4E+38 double 64 %lf 1,7E-308 1,7E+308 long double 80 %Lf 3,4E-4932 3,4E+4932 O tipo long double é o tipo de ponto flutuante com maior precisão. É importante observar que os intervalos de ponto flutuante, na tabela acima, estão indicados em faixa de expoente, mas os números podem assumir valores tanto positivos quanto negativos. Declaração e Inicialização de Variáveis As variáveis no C devem ser declaradas antes de serem usadas. A forma geral da declaração de variáveis é: tipo_da_variável lista_de_variáveis; As variáveis da lista de variáveis terão todas o mesmo tipo e deverão ser separadas por vírgula. Como o tipo default do C é o int, quando vamos declarar variáveis int com algum dos modificadores de tipo, basta colocar o nome do modificador de tipo. Assim um long basta para declarar um long int. Por exemplo, as declarações char ch, letra; long count; float pi; declaram duas variáveis do tipo char (ch e letra), uma variavel long int (count) e um float pi. Há três lugares nos quais podemos declarar variáveis. O primeiro é fora de todas as funções do programa. Estas variáveis são chamadas variáveis globais e podem ser usadas a partir de qualquer lugar no programa. Pode-se dizer que, como elas estão fora de todas as funções, todas as funções as vêem. O segundo lugar no qual se pode 21 declarar variáveis é no início de um bloco de código. Estas variáveis são chamadas locais e só têm validade dentro do bloco no qual são declaradas, isto é, só a função à qual ela pertence sabe da existência desta variável, dentro do bloco no qual foram declaradas. O terceiro lugar onde se pode declarar variáveis é na lista de parâmetros de uma função. Mais uma vez, apesar de estas variáveis receberem valores externos, estas variáveis são conhecidas apenas pela função onde são declaradas. Veja o programa abaixo: #include <stdio.h> int contador; int func1(int j) { /* aqui viria o código da funcao ... */ } int main() { char condicao; int i; for (i=0; i<100; i=i+1) { /* Bloco do for */ float f2; /* etc ... ... */ func1(i); } /* etc ... */ return(0); } A variável contador é uma variável global, e é acessível de qualquer parte do programa. As variáveis condição e i, só existem dentro de main(), isto é são variáveis locais de main. A variável float f2 é um exemplo de uma variável de bloco, isto é, ela somente é conhecida dentro do bloco do for, pertencente à função main. A variável inteira j é um exemplo de declaração na lista de parâmetros de uma função (a função func1). As regras que regem onde uma variável é válida chamam-se regras de escopo da variável. Há mais dois detalhes que devem ser ressaltados. Duas variáveis globais não podem ter o mesmo nome. O mesmo vale para duas variáveis locais de uma mesma função. Já duas variáveis locais, de funções diferentes, podem ter o mesmo nome sem perigo algum de conflito. Podemos inicializar variáveis no momento de sua declaração. Para fazer isto podemos usar a forma geral tipo_da_variável nome_da_variável = constante; 22 Isto é importante pois quando o C cria uma variável ele não a inicializa. Isto significa que até que um primeiro valor seja atribuído à nova variável ela tem um valor indefinido e que não pode ser utilizado para nada. Nunca presuma que uma variável declarada vale zero ou qualquer outro valor. Exemplos de inicialização são dados abaixo : char ch='D'; int count=0; float pi=3.141; Ressalte-se novamente que, em C, uma variável tem que ser declarada no início de um bloco de código. Assim, o programa a seguir não é válido em C (embora seja válido em C++). int main() { int i; int j; j = 10; int k = 20; /* Esta declaracao de variável não é válida, pois não está sendo feita no início do bloco */ return(0); } AUTO AVALIAÇÃO Veja como você está: Escreva um programa que declare uma variável inteira global e atribua o valor 10 a ela. Declare outras 5 variáveis inteiras locais ao programa principal e atribua os valores 20, 30, ..., 60 a elas. Declare 6 variáveis caracteres e atribua a elas as letras c, o, e, l, h, a . Finalmente, o programa deverá imprimir, usando todas as variáveis declaradas: As variáveis inteiras contem os números: 10,20,30,40,50,60 O animal contido nas variáveis caracteres e' a coelha Constantes Constantes são valores que são mantidos fixos pelo compilador. Já usamos constantes neste curso. São consideradas constantes, por exemplo, os números e caracteres como 45.65 ou 'n', etc... - Constantes dos tipos básicos Abaixo vemos as constantes relativas aos tipos básicos do C: 25 int a = 17, b = 3; int x, y; float z = 17. , z1, z2; x = a / b; y = a % b; z1 = z / b; z2 = a/b; ao final da execução destas linhas, os valores calculados seriam x = 5, y = 2, z1 = 5.666666 e z2 = 5.0 . Note que, na linha correspondente a z2, primeiramente é feita uma divisão inteira (pois os dois operandos são inteiros). Somente após efetuada a divisão é que o resultado é atribuído a uma variável float. Os operadores de incremento e decremento são unários que alteram a variável sobre a qual estão aplicados. O que eles fazem é incrementar ou decrementar, a variável sobre a qual estão aplicados, de 1. Então x++; x--; são equivalentes a x=x+1; x=x-1; Estes operadores podem ser pré-fixados ou pós- fixados. A diferença é que quando são pré-fixados eles incrementam e retornam o valor da variável já incrementada. Quando são pós-fixados eles retornam o valor da variável sem o incremento e depois incrementam a variável. Então, em x=23; y=x++; teremos, no final, y=23 e x=24. Em x=23; y=++x; teremos, no final, y=24 e x=24. Uma curiosidade: a linguagem de programação C++ tem este nome pois ela seria um "incremento" da linguagem C padrão. A linguagem C++ é igual à linguagem C só que com extensões que permitem a programação orientada a objeto, o que é um recurso extra. O operador de atribuição do C é o =. O que ele faz é pegar o valor à direita e atribuir à variável da esquerda. Além disto ele retorna o valor que ele atribuiu. Isto faz com que as seguintes expressões sejam válidas: x=y=z=1.5; /* Expressao 1 */ if (k=w) ... /* Expressão 2 */ A expressão 1 é válida, pois quando fazemos z=1.5 ela retorna 1.5, que é passado adiante, fazendo y = 1.5 e posteriormente x = 1.5. A expressão 2 será verdadeira se w for diferente de zero, pois este será o valor retornado por k=w. Pense bem antes de usar a expressão dois, pois ela pode gerar erros de interpretação. Você não está comparando k e w. Você está atribuindo o valor de w a k e usando este valor para tomar a decisão. 26 AUTO AVALIAÇÃO Veja como você está: Diga o resultado das variáveis x, y e z depois da seguinte seqüência de operações: int x,y,z; x=y=10; z=++x; x=-x; y++; x=x+y-(z--); Operadores Relacionais e Lógicos Os operadores relacionais do C realizam comparações entre variáveis. São eles: Operador Ação > Maior do que >= Maior ou igual a < Menor do que <= Menor ou igual a == Igual a != Diferente de Os operadores relacionais retornam verdadeiro (1) ou falso (0). Para verificar o funcionamento dos operadores relacionais, execute o programa abaixo: /* Este programa ilustra o funcionamento dos operadores relacionais. */ #include <stdio.h> int main() { int i, j; printf("\nEntre com dois números inteiros: "); scanf("%d%d", &i, &j); printf("\n%d == %d é %d\n", i, j, i==j); printf("\n%d != %d é %d\n", i, j, i!=j); printf("\n%d <= %d é %d\n", i, j, i<=j); printf("\n%d >= %d é %d\n", i, j, i>=j); printf("\n%d < %d é %d\n", i, j, i<j); printf("\n%d > %d é %d\n", i, j, i>j); return(0); } Você pode notar que o resultado dos operadores relacionais é sempre igual a 0 (falso) ou 1 (verdadeiro). 27 Para fazer operações com valores lógicos (verdadeiro e falso) temos os operadores lógicos: Operador Ação && AND (E) || OR (OU) ! NOT (NÃO) Usando os operadores relacionais e lógicos podemos realizar uma grande gama de testes. A tabela-verdade destes operadores é dada a seguir: p falso falso verdadeiro verdadeiro q falso verdadeiro falso verdadeiro p AND q falso falso falso verdadeiro p OR q falso verdadeiro verdadeiro verdadeiro O programa a seguir ilustra o funcionamento dos operadores lógicos. Compile-o e faça testes com vários valores para i e j: #include <stdio.h> int main() { int i, j; printf("informe dois números(cada um sendo 0 ou 1): "); scanf("%d%d", &i, &j); printf("%d AND %d é %d\n", i, j, i && j); printf("%d OR %d é %d\n", i, j, i || j); printf("NOT %d é %d\n", i, !i); } Exemplo: No trecho de programa abaixo a operação j++ será executada, pois o resultado da expressão lógica é verdadeiro: int i = 5, j =7; if ( (i > 3) && ( j <= 7) && ( i != j) ) j++; V AND V AND V = V Mais um exemplo. O programa abaixo, imprime na tela somente os números pares entre 1 e 100, apesar da variação de i ocorrer de 1 em 1: /* Imprime os números pares entre 1 e 100. */ #include <stdio.h> int main() { int i; for(i=1; i<=100; i++) if(!(i%2)) printf("%d ",i); /* o operador de resto dará falso (zero) */ } /* quando usada c/ número par. Esse resultado é invertido pelo ! */ 30 #include<stdio.h> int main() { int x, y; for(x=0 , y=0 ; x+y < 100 ; ++x , y++) /* Duas variáveis de controle: x e y . Foi atribuído o valor zero a cada uma delas na inicialização do for e ambas são incrementadas na parte de incremento do for */ printf("\n%d ", x+y); /* o programa imprimirá os números pares de 2 a 98 */ } - Tabela de Precedências do C Esta é a tabela de precedência dos operadores em C. Alguns (poucos) operadores ainda não foram estudados, e serão apresentados em aulas posteriores. Maior precedência () [] -> ! ~ ++ -- . -(unário) (cast) *(unário) &(unário) sizeof * / % + - << >> <<= >>= == != & ^ | && || ? = += -= *= /= Menor precedência , Uma dica aos iniciantes: Você não precisa saber toda a tabela de precedências de cor. É útil que você conheça as principais relações, mas é aconselhável que ao escrever o seu código, você tente isolar as expressões com parênteses, para tornar o seu programa mais legível. 31 Modeladores (Casts) Um modelador é aplicado a uma expressão. Ele força a mesma a ser de um tipo especificado. Sua forma geral é: (tipo)expressão Um exemplo: #include <stdio.h> int main () { int num; float f; num=10; f=(float)num/7; /* Uso do modelador . Força a transformação de num em um float */ printf ("%f",f); return(0); } Se não tivéssemos usado o modelador no exemplo acima o C faria uma divisão inteira entre 10 e 7. O resultado seria 1 (um) e este seria depois convertido para float mas continuaria a ser 1.0. Com o modelador temos o resultado correto. AUTO AVALIAÇÃO Veja como você está: Compile o exemplo acima sem usar o modelador, e verifique os resultados. Compile-o novamente usando o modelador e compare a saída com os resultados anteriores. 32 4 - ESTRUTURAS DE CONTROLE DE FLUXO As estruturas de controle de fluxo são fundamentais para qualquer linguagem de programação. Sem elas só haveria uma maneira do programa ser executado: de cima para baixo comando por comando. Não haveria condições, repetições ou saltos. A linguagem C possui diversos comandos de controle de fluxo. É possível resolver todos os problemas sem utilizar todas elas, mas devemos nos lembrar que a elegância e facilidade de entendimento de um programa dependem do uso correto das estruturas no local certo. O Comando if Já introduzimos o comando if. Sua forma geral é: if (condição) declaração; A expressão, na condição, será avaliada. Se ela for zero, a declaração não será executada. Se a condição for diferente de zero a declaração será executada. Aqui reapresentamos o exemplo de um uso do comando if : #include <stdio.h> int main () { int num; printf ("Digite um numero: "); scanf ("%d",&num); if (num>10) printf ("\n\nO numero e maior que 10"); if (num==10) { printf ("\n\nVoce acertou!\n"); printf ("O numero e igual a 10."); } if (num<10) printf ("\n\nO numero e menor que 10"); return(0); } - O else Podemos pensar no comando else como sendo um complemento do comando if. O comando if completo tem a seguinte forma geral: if (condição) declaração_1; else declaração_2; A expressão da condição será avaliada. Se ela for diferente de zero a declaração 1 será executada. Se for zero a declaração 2 será executada. É importante nunca esquecer que, quando usamos a estrutura if-else, estamos garantindo que uma das duas declarações será executada. Nunca serão executadas as duas ou nenhuma delas. Abaixo está um exemplo do uso do if-else que deve funcionar como o programa da seção anterior. 35 Vejamos um exemplo: #include <stdio.h> int main () { int num; printf ("Digite um numero: "); scanf ("%d",&num); if (num==10) { printf ("\n\nVoce acertou!\n"); printf ("O numero e igual a 10.\n"); } else { if (num>10) { printf ("O numero e maior que 10."); } else { printf ("O numero e menor que 10."); } } return(0); } - O Operador ? Uma expressão como: if (a>0) b=-150; else b=150; pode ser simplificada usando-se o operador ? da seguinte maneira: b=a>0?-150:150; De uma maneira geral expressões do tipo: if (condição) expressão_1; else expressão_2; podem ser substituídas por: condição?expressão_1:expressão_2; O operador ? é limitado (não atende a uma gama muito grande de casos) mas pode ser usado para simplificar expressões complicadas. Uma aplicação interessante é a do contador circular. 36 Veja o exemplo: #include <stdio.h> int main() { int index = 0, contador; char letras[5] = "Joao"; for (contador=0; contador < 1000; contador++) { printf("\n%c",letras[index]); (index==3) ? index=0: ++index; } } O nome Joao é escrito na tela verticalmente até a variável contador determinar o término do programa. Enquanto isto a variável index assume os valores 0, 1, 2, 3, , 0, 1, ... progressivamente. AUTO-AVALIAÇÃO Veja como você está: Altere o último exemplo para que ele escreva cada letra 5 vezes seguidas. Para isto, use um 'if' para testar se o contador é divisível por cinco (utilize o operador %) e só então realizar a atualização em index. O Comando switch O comando if-else e o comando switch são os dois comandos de tomada de decisão. Sem dúvida alguma o mais importante dos dois é o if, mas o comando switch tem aplicações valiosas. Mais uma vez vale lembrar que devemos usar o comando certo no local certo. Isto assegura um código limpo e de fácil entendimento. O comando switch é próprio para se testar uma variável em relação a diversos valores pré- estabelecidos. Sua forma geral é: switch (variável) { case constante_1: declaração_1; break; case constante_2: declaração_2; break; . . . case constante_n: declaração_n; break; default declaração_default; } 37 Podemos fazer uma analogia entre o switch e a estrutura if-else-if apresentada anteriormente. A diferença fundamental é que a estrutura switch não aceita expressões. Aceita apenas constantes. O switch testa a variável e executa a declaração cujo case corresponda ao valor atual da variável. A declaração default é opcional e será executada apenas se a variável, que está sendo testada, não for igual a nenhuma das constantes. O comando break, faz com que o switch seja interrompido assim que uma das declarações seja executada. Mas ele não é essencial ao comando switch. Se após a execução da declaração não houver um break, o programa continuará executando. Isto pode ser útil em algumas situações, mas eu recomendo cuidado. Veremos agora um exemplo do comando switch: #include <stdio.h> int main () { int num; printf ("Digite um numero: "); scanf ("%d",&num); switch (num) { case 9: printf ("\n\nO numero e igual a 9.\n"); break; case 10: printf ("\n\nO numero e igual a 10.\n"); break; case 11: printf ("\n\nO numero e igual a 11.\n"); break; default: printf ("\n\nO numero nao e nem 9 nem 10 nem 11.\n"); } return(0); } AUTO AVALIAÇÃO Veja como você está. Escreva um programa que pede para o usuário entrar um número correspondente a um dia da semana e que então apresente na tela o nome do dia. utilizando o comando switch. 40 O programa #include <stdio.h> int main () { long int i; printf("\a"); /* Imprime o caracter de alerta (um beep) */ for (i=0; i<10000000; i++); /* Espera 10.000.000 de iteracoes */ printf("\a"); /* Imprime outro caracter de alerta */ return(0); } faz isto. AUTO AVALIAÇÃO Veja como você está. Faça um programa que inverta uma string: leia a string com gets e armazene-a invertida em outra string. Use o comando for para varrer a string até o seu final. O Comando while O comando while tem a seguinte forma geral: while (condição) declaração; Assim como fizemos para o comando for, vamos tentar mostrar como o while funciona fazendo uma analogia. Então o while seria equivalente a: if (condição) { declaração; "Volte para o comando if" } Podemos ver que a estrutura while testa uma condição. Se esta for verdadeira a declaração é executada e faz-se o teste novamente, e assim por diante. Assim como no caso do for, podemos fazer um loop infinito. Para tanto basta colocar uma expressão eternamente verdadeira na condição. Pode-se também omitir a declaração e fazer um loop sem conteúdo. Vamos ver um exemplo do uso do while. O programa abaixo é executado enquanto i for menor que 100. Veja que ele seria implementado mais naturalmente com um for ... 41 #include <stdio.h> int main () { int i = 0; while ( i < 100) { printf(" %d", i); i++; } return(0); } O programa abaixo espera o usuário digitar a tecla 'q' e só depois finaliza: #include <stdio.h> int main () { char Ch; Ch='\0'; while (Ch!='q') { scanf("%c", &Ch); } return(0); } AUTO AVALIAÇÃO Veja como você está: Refaça o programa da página anterior. Use o comando while para fechar o loop. O Comando do-while A terceira estrutura de repetição que veremos é o do-while de forma geral: do { declaração; } while (condição); Mesmo que a declaração seja apenas um comando é uma boa prática deixar as chaves. O ponto-e- vírgula final é obrigatório. Vamos, como anteriormente, ver o funcionamento da estrutura do-while "por dentro": declaração; if (condição) "Volta para a declaração" Vemos pela análise do bloco acima que a estrutura do-while executa a declaração, testa a condição e, se esta for verdadeira, volta para a declaração. A grande novidade no comando do-while é que ele, ao contrário do for e do while, garante que a declaração será executada pelo menos uma vez. 42 Um dos usos da extrutura do-while é em menus, nos quais você quer garantir que o valor digitado pelo usuário seja válido, conforme apresentado abaixo: #include <stdio.h> int main () { int i; do { printf ("\n\nEscolha a fruta pelo numero:\n\n"); printf ("\t(1)...Mamao\n"); printf ("\t(2)...Abacaxi\n"); printf ("\t(3)...Laranja\n\n"); scanf("%d", &i); } while ((i<1)||(i>3)); switch (i) { case 1: printf ("\t\tVoce escolheu Mamao.\n"); break; case 2: printf ("\t\tVoce escolheu Abacaxi.\n"); break; case 3: printf ("\t\tVoce escolheu Laranja.\n"); break; } return(0); } AUTO AVALIAÇÃO Veja como você está. Refaça o exercício da página c410.html utilizando o laço do-while para controlar o fluxo. O Comando break Nós já vimos dois usos para o comando break: interrompendo os comandos switch e for. Na verdade, estes são os dois usos do comando break: ele pode quebrar a execução de um comando (como no caso do switch) ou interromper a execução de qualquer loop (como no caso do for, do while ou do do while). O break faz com que a execução do programa continue na primeira linha seguinte ao loop ou bloco que está sendo interrompido. 45 #include <stdio.h> int main() { int opcao; while (opcao != 5) { REFAZ: printf("\n\n Escolha uma opcao entre 1 e 5: "); scanf("%d", &opcao); if ((opcao > 5)||(opcao <1)) goto REFAZ; /* Opcao invalida: volta ao rotulo REFAZ */ switch (opcao) { case 1: printf("\n --> Primeira opcao.."); break; case 2: printf("\n --> Segunda opcao.."); break; case 3: printf("\n --> Terceira opcao.."); break; case 4: printf("\n --> Quarta opcao.."); break; case 5: printf("\n --> Abandonando.."); break; } } return(0); } AUTO AVALIAÇÃO Escreva um programa que peça três inteiros, correspondentes a dia , mês e ano. Peça os números até conseguir valores que estejam na faixa correta (dias entre 1 e 31, mês entre 1 e 12 e ano entre 1900 e 2100). Verifique se o mês e o número de dias batem (incluindo verificação de anos bissextos). Se estiver tudo certo imprima o número que aquele dia corresponde no ano. Comente seu programa. PS: Um ano é bissexto se for divisível por 4 e não for divisível por 100, exceto para os anos divisíveis por 400, que também são bissextos. 46 5 - MATRIZES E STRINGS Vetores Vetores nada mais são que matrizes unidimensionais. Vetores são uma estrutura de dados muito utilizada. É importante notar que vetores, matrizes bidimensionais e matrizes de qualquer dimensão são caracterizadas por terem todos os elementos pertencentes ao mesmo tipo de dado. Para se declarar um vetor podemos utilizar a seguinte forma geral: tipo_da_variável nome_da_variável [tamanho]; Quando o C vê uma declaração como esta ele reserva um espaço na memória suficientemente grande para armazenar o número de células especificadas em tamanho. Por exemplo, se declararmos: float exemplo [20]; o C irá reservar 4x20=80 bytes. Estes bytes são reservados de maneira contígua. Na linguagem C a numeração começa sempre em zero. Isto significa que, no exemplo acima, os dados serão indexados de 0 a 19. Para acessá-los vamos escrever: exemplo[0] exemplo[1] . . . exemplo[19] Mas ninguém o impede de escrever: exemplo[30] exemplo[103] Por quê? Porque o C não verifica se o índice que você usou está dentro dos limites válidos. Este é um cuidado que você deve tomar. Se o programador não tiver atenção com os limites de validade para os índices ele corre o risco de ter variáveis sobreescritas ou de ver o computador travar. Bugs terríveis podem surgir. Vamos ver agora um exemplo de utilização de vetores: #include <stdio.h> int main () { int num[100]; /* Declara um vetor de inteiros de 100 posicoes */ int count=0; int totalnums; do { printf ("\nEntre com um numero (-999 p/ terminar): "); scanf ("%d",&num[count]); count++; } while (num[count-1]!=-999); totalnums=count-1; printf ("\n\n\n\t Os números que você digitou foram:\n\n"); for (count=0;count<totalnums;count++) printf (" %d",num[count]); return(0); } 47 No exemplo acima, o inteiro count é inicializado em 0. O programa pede pela entrada de números até que o usuário entre com o Flag -999. Os números são armazenados no vetor num. A cada número armazenado, o contador do vetor é incrementado para na próxima iteração escrever na próxima posição do vetor. Quando o usuário digita o flag, o programa abandona o primeiro loop e armazena o total de números gravados. Por fim, todos os números são impressos. É bom lembrar aqui que nenhuma restrição é feita quanto a quantidade de números digitados. Se o usuário digitar mais de 100 números, o programa tentará ler normalmente, mas o programa os escreverá em uma parte não alocada de memória, pois o espaço alocado foi para somente 100 inteiros. Isto pode resultar nos mais variados erros no instante da execução do programa. AUTO AVALIAÇÃO Veja como você está. Reescreva o exemplo acima, realizando a cada leitura um teste para ver se a dimensão do vetor não foi ultrapassada. Caso o usuário entre com 100 números, o programa deverá abortar o loop de leitura automaticamente. O uso do Flag (-999) não deve ser retirado. Strings Strings são vetores de chars. Nada mais e nada menos. As strings são o uso mais comum para os vetores. Devemos apenas ficar atentos para o fato de que as strings têm o seu último elemento como um '\0'. A declaração geral para uma string é: char nome_da_string [tamanho]; Devemos lembrar que o tamanho da string deve incluir o '\0' final. A biblioteca padrão do C possui diversas funções que manipulam strings. Estas funções são úteis pois não se pode, por exemplo, igualar duas strings: string1=string2; /* NAO faca isto */ Fazer isto é um desastre. Quando você terminar de ler a seção que trata de ponteiros você entenderá porquê. As strings devem ser igualadas elemento a elemento. Quando vamos fazer programas que tratam de string muitas vezes podemos fazer bom proveito do fato de que uma string termina com '\0' (isto é, o número inteiro 0). Veja, por exemplo, o programa abaixo que serve para igualar duas strings (isto é, copia os caracteres de uma string para o vetor da outra) : #include <stdio.h> int main () { int count; char str1[100],str2[100]; .... /* Aqui o programa le str1 que sera copiada para str2 */ for (count=0;str1[count];count++) str2[count]=str1[count]; str2[count]='\0'; .... /* Aqui o programa continua */ } 50 A função strcmp() compara a string 1 com a string 2. Se as duas forem idênticas a função retorna zero. Se elas forem diferentes a função retorna não-zero. Um exemplo da sua utilização: #include <stdio.h> #include <string.h> int main () { char str1[100],str2[100]; printf ("Entre com uma string: "); gets (str1); printf ("\n\nEntre com outra string: "); gets (str2); if (strcmp(str1,str2)) printf ("\n\nAs duas strings são diferentes."); else printf ("\n\nAs duas strings são iguais."); return(0); } AUTO AVALIAÇÃO Veja como você está. Faça um programa que leia quatro palavras pelo teclado, e armazene cada palavra em uma string. Depois, concatene todas as strings lidas numa única string. Por fim apresente esta como resultado ao final do programa. Matrizes - Matrizes bidimensionais Já vimos como declarar matrizes unidimensionais (vetores). Vamos tratar agora de matrizes bidimensionais. A forma geral da declaração de uma matriz bidimensional é muito parecida com a declaração de um vetor: tipo_da_variável nome_da_variável [altura][largura]; É muito importante ressaltar que, nesta estrutura, o índice da esquerda indexa as linhas e o da direita indexa as colunas. Quando vamos preencher ou ler uma matriz no C o índice mais à direita varia mais rapidamente que o índice à esquerda. Mais uma vez é bom lembrar que, na linguagem C, os índices variam de zero ao valor declarado, menos um; mas o C não vai verificar isto para o usuário. Manter os índices na faixa permitida é tarefa do programador. Abaixo damos um exemplo do uso de uma matriz: 51 #include <stdio.h> int main () { int mtrx [20][10]; int i,j,count; count=1; for (i=0;i<20;i++) for (j=0;j<10;j++) { mtrx[i][j]=count; count++; } return(0); } No exemplo acima, a matriz mtrx é preenchida, sequencialmente por linhas, com os números de 1 a 200. Você deve entender o funcionamento do programa acima antes de prosseguir. - Matrizes de strings Matrizes de strings são matrizes bidimensionais. Imagine uma string. Ela é um vetor. Se fizermos um vetor de strings estaremos fazendo uma lista de vetores. Esta estrutura é uma matriz bidimensional de chars. Podemos ver a forma geral de uma matriz de strings como sendo: char nome_da_variável [num_de_strings][compr_das_strings]; Aí surge a pergunta: como acessar uma string individual? Fácil. É só usar apenas o primeiro índice. Então, para acessar uma determinada string faça: nome_da_variável [índice] Aqui está um exemplo de um programa que lê 5 strings e as exibe na tela: #include <stdio.h> int main () { char strings [5][100]; int count; for (count=0;count<5;count++) { printf ("\n\nDigite uma string: "); gets (strings[count]); } printf ("\n\n\nAs strings que voce digitou foram:\n\n"); for (count=0;count<5;count++) printf ("%s\n",strings[count]); return(0); } 52 - Matrizes multidimensionais O uso de matrizes multidimensionais na linguagem C é simples. Sua forma geral é: tipo_da_variável nome_da_variável [tam1][tam2] ... [tamN]; Uma matriz N-dimensional funciona basicamente como outros tipos de matrizes. Basta lembrar que o índice que varia mais rapidamente é o índice mais à direita. - Inicialização Podemos inicializar matrizes, assim como podemos inicializar variáveis. A forma geral de uma matriz como inicialização é: tipo_da_variável nome_da_variável [tam1][tam2] ... [tamN] = {lista_de_valores}; A lista de valores é composta por valores (do mesmo tipo da variável) separados por vírgula. Os valores devem ser dados na ordem em que serão colocados na matriz. Abaixo vemos alguns exemplos de inicializações de matrizes: float vect [6] = { 1.3, 4.5, 2.7, 4.1, 0.0, 100.1 }; int matrx [3][4] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; char str [10] = { 'J', 'o', 'a', 'o', '\0' }; char str [10] = "Joao"; char str_vect [3][10] = { "Joao", "Maria", "Jose" }; O primeiro demonstra inicialização de vetores. O segundo exemplo demonstra a inicialização de matrizes multidimensionais, onde matrx está sendo inicializada com 1, 2, 3 e 4 em sua primeira linha, 5, 6, 7 e 8 na segunda linha e 9, 10, 11 e 12 na última linha. No terceiro exemplo vemos como inicializar uma string e, no quarto exemplo, um modo mais compacto de inicializar uma string. O quinto exemplo combina as duas técnicas para inicializar um vetor de strings. Repare que devemos incluir o ; no final da inicialização. - Inicialização sem especificação de tamanho Podemos, em alguns casos, inicializar matrizes das quais não sabemos o tamanho a priori. O compilador C vai, neste caso verificar o tamanho do que você declarou e considerar como sendo o tamanho da matriz. Isto ocorre na hora da compilação e não poderá mais ser mudado durante o programa, sendo muito útil, por exemplo, quando vamos inicializar uma string e não queremos contar quantos caracteres serão necessários. Alguns exemplos: char mess [] = "Linguagem C: flexibilidade e poder."; int matrx [][2] = { 1,2,2,4,3,6,4,8,5,10 }; No primeiro exemplo, a string mess terá tamanho 36. Repare que o artifício para realizar a inicialização sem especificação de tamanho é não especificar o tamanho! No segundo exemplo o valor não especificado será 5. AUTO AVALIAÇÃO Veja como você está. 55 O ponteiro deve ser inicializado (apontado para algum lugar conhecido) antes de ser usado! Isto é de suma importância! Para atribuir um valor a um ponteiro recém-criado poderíamos igualá-lo a um valor de memória. Mas, como saber a posição na memória de uma variável do nosso programa? Seria muito difícil saber o endereço de cada variável que usamos, mesmo porque estes endereços são determinados pelo compilador na hora da compilação e realocados na execução. Podemos então deixar que o compilador faça este trabalho por nós. Para saber o endereço de uma variável basta usar o operador &. Veja o exemplo: int count=10; int *pt; pt=&count; Criamos um inteiro count com o valor 10 e um apontador para um inteiro pt. A expressão &count nos dá o endereço de count, o qual armazenamos em pt. Simples, não é? Repare que não alteramos o valor de count, que continua valendo 10. Como nós colocamos um endereço em pt, ele está agora "liberado" para ser usado. Podemos, por exemplo, alterar o valor de count usando pt. Para tanto vamos usar o operador "inverso" do operador &. É o operador *. No exemplo acima, uma vez que fizemos pt=&count a expressão *pt é equivalente ao próprio count. Isto significa que, se quisermos mudar o valor de count para 12, basta fazer *pt=12. Vamos fazer uma pausa e voltar à nossa analogia para ver o que está acontecendo. Digamos que exista uma firma. Ela é como uma variável que já foi declarada. Você tem um papel em branco onde vai anotar o endereço da firma. O papel é um ponteiro do tipo firma. Você então liga para a firma e pede o seu endereço, o qual você vai anotar no papel. Isto é equivalente, no C, a associar o papel à firma com o operador &. Ou seja, o operador & aplicado à firma é equivalente a você ligar para a mesma e pedir o endereço. Uma vez de posse do endereço no papel você poderia, por exemplo, fazer uma visita à firma. No C você faz uma visita à firma aplicando o operador * ao papel. Uma vez dentro da firma você pode copiar seu conteúdo ou modificá-lo. Uma observação importante: apesar do símbolo ser o mesmo, o operador * (multiplicação) não é o mesmo operador que o * (referência de ponteiros). Para começar o primeiro é binário, e o segundo é unário pré-fixado. Aqui vão dois exemplos de usos simples de ponteiros: #include <stdio.h> int main () { int num,valor; int *p; num=55; p=&num; /* Pega o endereco de num */ valor=*p; /* Valor e igualado a num de uma maneira indireta */ printf ("\n\n%d\n",valor); printf ("Endereco para onde o ponteiro aponta: %p\n",p); printf ("Valor da variavel apontada: %d\n",*p); return(0); } 56 #include <stdio.h> int main () { int num,*p; num=55; p=&num; /* Pega o endereco de num */ printf ("\nValor inicial: %d\n",num); *p=100; /* Muda o valor de num de uma maneira indireta */ printf ("\nValor final: %d\n",num); return(0); } Nos exemplos acima vemos um primeiro exemplo do funcionamento dos ponteiros. No primeiro exemplo, o código %p usado na função printf() indica à função que ela deve imprimir um endereço. Podemos fazer algumas operações aritméticas com ponteiros. A primeira, e mais simples, é igualar dois ponteiros. Se temos dois ponteiros p1 e p2 podemos igualá-los fazendo p1=p2. Repare que estamos fazendo com que p1 aponte para o mesmo lugar que p2. Se quisermos que a variável apontada por p1 tenha o mesmo conteúdo da variável apontada por p2 devemos fazer *p1=*p2. Basicamente, depois que se aprende a usar os dois operadores (& e *) fica fácil entender operações com ponteiros. As próximas operações, também muito usadas, são o incremento e o decremento. Quando incrementamos um ponteiro ele passa a apontar para o próximo valor do mesmo tipo para o qual o ponteiro aponta. Isto é, se temos um ponteiro para um inteiro e o incrementamos ele passa a apontar para o próximo inteiro. Esta é mais uma razão pela qual o compilador precisa saber o tipo de um ponteiro: se você incrementa um ponteiro char* ele anda 1 byte na memória e se você incrementa um ponteiro double* ele anda 8 bytes na memória. O decremento funciona semelhantemente. Supondo que p é um ponteiro, as operações são escritas como: p++; p--; Mais uma vez insisto. Estamos falando de operações com ponteiros e não de operações com o conteúdo das variáveis para as quais eles apontam. Por exemplo, para incrementar o conteúdo da variável apontada pelo ponteiro p, faz-se: (*p)++; Outras operações aritméticas úteis são a soma e subtração de inteiros com ponteiros. Vamos supor que você queira incrementar um ponteiro de 15. Basta fazer: p=p+15; ou p+=15; E se você quiser usar o conteúdo do ponteiro 15 posições adiante: *(p+15); A subtração funciona da mesma maneira. Uma outra operação, às vezes útil, é a comparação entre dois ponteiros. Mas que informação recebemos quando comparamos dois ponteiros? Bem, em primeiro lugar, podemos saber se dois ponteiros são iguais ou diferentes (== e !=). No caso de operações do tipo >, <, >= e <= estamos comparando qual ponteiro aponta para uma posição mais alta na memória. Então uma comparação entre ponteiros pode nos dizer qual dos dois está "mais adiante" na 57 memória. A comparação entre dois ponteiros se escreve como a comparação entre outras duas variáveis quaisquer: p1>p2 Há entretanto operações que você não pode efetuar num ponteiro. Você não pode dividir ou multiplicar ponteiros, adicionar dois ponteiros, adicionar ou subtrair floats ou doubles de ponteiros. AUTO AVALIAÇÃO Veja como você está. a) Explique a diferença entre p++; (*p)++; *(p++); • O que quer dizer *(p+10);? • Explique o que você entendeu da comparação entre ponteiros b) Qual o valor de y no final do programa? Tente primeiro descobrir e depois verifique no computador o resultado. A seguir, escreva um /* comentário */ em cada comando de atribuição explicando o que ele faz e o valor da variável à esquerda do '=' após sua execução. int main() { int y, *p, x; y = 0; p = &y; x = *p; x = 4; (*p)++; x--; (*p) += x; printf ("y = %d\n", y); return(0); } Ponteiros e Vetores Veremos nestas seções que ponteiros e vetores têm uma ligação muito forte. - Vetores como ponteiros Vamos dar agora uma idéia de como o C trata vetores. Quando você declara uma matriz da seguinte forma: tipo_da_variável nome_da_variável [tam1][tam2] ... [tamN]; 60 #include <stdio.h> int main () { int matrx [10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; int *p; p=matrx; printf ("O terceiro elemento do vetor e: %d",p[2]); return(0); } Podemos ver que p[2] equivale a *(p+2). - Strings Seguindo o raciocínio acima, nomes de strings, são do tipo char*. Isto nos permite escrever a nossa função StrCpy(), que funcionará de forma semelhante à função strcpy() da biblioteca: #include <stdio.h> void StrCpy (char *destino,char *origem) { while (*origem) { *destino=*origem; origem++; destino++; } *destino='\0'; } int main () { char str1[100],str2[100],str3[100]; printf ("Entre com uma string: "); gets (str1); StrCpy (str2,str1); StrCpy (str3,"Voce digitou a string "); printf ("\n\n%s%s",str3,str2); return(0); } Há vários pontos a destacar no programa acima. Observe que podemos passar ponteiros como argumentos de funções. Na verdade é assim que funções como gets() e strcpy() funcionam. Passando o ponteiro você possibilita à função alterar o conteúdo das strings. Você já estava passando os ponteiros e não sabia. No comando while (*origem) estamos usando o fato de que a string termina com '\0' como critério de parada. Quando fazemos origem++ e destino++ o leitor poderia argumentar que estamos alterando o valor do ponteiro-base da string, contradizendo o que recomendei que se deveria fazer, no final de uma seção anterior. O que o leitor talvez não saiba ainda (e que será estudado em detalhe mais adiante) é que, no C, são passados para as funções cópias dos argumentos. Desta maneira, quando alteramos o ponteiro origem na função StrCpy() o ponteiro str2 permanece inalterado na função main(). 61 - Endereços de elementos de vetores Nesta seção vamos apenas ressaltar que a notação &nome_da_variável[índice] é válida e retorna o endereço do ponto do vetor indexado por índice. Isto seria equivalente a nome_da_variável + indice. É interessante notar que, como consequência, o ponteiro nome_da_variável tem o endereço &nome_da_variável[0], que indica onde na memória está guardado o valor do primeiro elemento do vetor. - Vetores de ponteiros Podemos construir vetores de ponteiros como declaramos vetores de qualquer outro tipo. Uma declaração de um vetor de ponteiros inteiros poderia ser: int *pmatrx [10]; No caso acima, pmatrx é um vetor que armazena 10 ponteiros para inteiros. AUTO AVALIAÇÃO Veja como você está. Fizemos a função StrCpy(). Faça uma função StrLen() e StrCat() que funcionem como as funções strlen() e strcat() de string.h respectivamente Inicializando Ponteiros Podemos inicializar ponteiros. Vamos ver um caso interessante dessa inicialização de ponteiros com strings. Precisamos, para isto, entender como o C trata as strings constantes. Toda string que o programador insere no programa é colocada num banco de strings que o compilador cria. No local onde está uma string no programa, o compilador coloca o endereço do início daquela string (que está no banco de strings). É por isto que podemos usar strcpy() do seguinte modo: strcpy (string,"String constante."); strcpy() pede dois parâmetros do tipo char*. Como o compilador substitui a string "String constante." pelo seu endereço no banco de strings, tudo está bem para a função strcpy(). O que isto tem a ver com a inicialização de ponteiros? É que, para uma string que vamos usar várias vezes, podemos fazer: char *str1="String constante."; Aí poderíamos, em todo lugar que precisarmos da string, usar a variável str1. Devemos apenas tomar cuidado ao usar este ponteiro. Se o alterarmos vamos perder a string. Se o usarmos para alterar a string podemos facilmente corromper o banco de strings que o compilador criou. 62 Mais uma vez fica o aviso: ponteiros são poderosos mas, se usados com descuido, podem ser uma ótima fonte de dores de cabeça. AUTO AVALIAÇÃO Escreva a função int strend(char *s, char *t) que retorna 1 (um) se a cadeia de caracteres t ocorrer no final da cadeia s, e 0 (zero) caso contrário. Ponteiros para Ponteiros Um ponteiro para um ponteiro é como se você anotasse o endereço de um papel que tem o endereço da casa do seu amigo. Podemos declarar um ponteiro para um ponteiro com a seguinte notação: tipo_da_variável **nome_da_variável; Algumas considerações: **nome_da_variável é o conteúdo final da variável apontada; *nome_da_variável é o conteúdo do ponteiro intermediário. No C podemos declarar ponteiros para ponteiros para ponteiros, ou então, ponteiros para ponteiros para ponteiros para ponteiros (UFA!) e assim por diante. Para fazer isto (não me pergunte a utilidade disto!) basta aumentar o número de asteriscos na declaracão. A lógica é a mesma. Para acessar o valor desejado apontado por um ponteiro para ponteiro, o operador asterisco deve ser aplicado duas vezes, como mostrado no exemplo abaixo: #include <stdio.h> int main() { float fpi = 3.1415, *pf, **ppf; pf = &fpi; /* pf armazena o endereco de fpi */ ppf = &pf; /* ppf armazena o endereco de pf */ printf("%f", **ppf); /* Imprime o valor de fpi */ printf("%f", *pf); /* Tambem imprime o valor de fpi */ return(0); } AUTO AVALIAÇÃO Veja como você está. Verifique o programa abaixo. Encontre o seu erro e corrija-o para que escreva o numero 10 na tela. 65 #include <stdio.h> int Square (int a) { return (a*a); } int main () { int num; printf ("Entre com um numero: "); scanf ("%d",&num); num=Square(num); printf ("\n\nO seu quadrado vale: %d\n",num); return 0; } #include <stdio.h> int EPar (int a) { if (a%2) /* Verifica se a e divisivel por dois */ return 0; /* Retorna 0 se nao for divisivel */ else return 1; /* Retorna 1 se for divisivel */ } int main () { int num; printf ("Entre com numero: "); scanf ("%d",&num); if (EPar(num)) printf ("\n\nO numero e par.\n"); else printf ("\n\nO numero e impar.\n"); return 0; } É importante notar que, como as funções retornam valores, podemos aproveitá- los para fazer atribuições, ou mesmo para que estes valores participem de expressões. Mas não podemos fazer: func(a,b)=x; /* Errado! */ No segundo exemplo vemos o uso de mais de um return em uma função. Fato importante: se uma função retorna um valor você não precisa aproveitar este valor. Se você não fizer nada com o valor de retorno de uma função ele será descartado. Por exemplo, a função printf() retorna um inteiro que nós nunca usamos para nada. Ele é descartado. 66 AUTO AVALIAÇÃO Veja como você está. Escreva a função 'EDivisivel(int a, int b)' (tome como base EPar(int a)). A função deverá retornar 1 se o resto da divisão de a por b for zero. Caso contrário, a função deverá retornar zero. Protótipos de Funções Até agora, nos exemplos apresentados, escrevemos as funções antes de escrevermos a função main(). Isto é, as funções estão fisicamente antes da função main(). Isto foi feito por uma razão. Imagine-se na pele do compilador. Se você fosse compilar a função main(), onde são chamadas as funções, você teria que saber com antecedência quais são os tipos de retorno e quais são os parâmetros das funções para que você pudesse gerar o código corretamente. Foi por isto as funções foram colocadas antes da função main(): quando o compilador chegasse à função main() ele já teria compilado as funções e já saberia seus formatos. Mas, muitas vezes, não poderemos nos dar ao luxo de escrever nesta ordem. Muitas vezes teremos o nosso programa espalhado por vários arquivos. Ou seja, estaremos chamando funções em um arquivo que serão compiladas em outro arquivo. Como manter a coerência? A solução são os protótipos de funções. Protótipos são nada mais, nada menos, que declarações de funções. Isto é, você declara uma função que irá usar. O compilador toma então conhecimento do formato daquela função antes de compilá-la. O código correto será então gerado. Um protótipo tem o seguinte formato: tipo_de_retorno nome_da_função (declaração_de_parâmetros); onde o tipo-de-retorno, o nome-da-função e a declaração-de-parâmetros são os mesmos que você pretende usar quando realmente escrever a função. Repare que os protótipos têm uma nítida semelhança com as declarações de variáveis. Vamos implementar agora um dos exemplos da seção anterior com algumas alterações e com protótipos: #include <stdio.h> float Square (float a); int main () { float num; printf ("Entre com um numero: "); scanf ("%f",&num); num=Square(num); printf ("\n\nO seu quadrado vale: %f\n",num); return 0; } float Square (float a) { return (a*a); } Observe que a função Square() está colocada depois de main(), mas o seu protótipo está antes. Sem isto este programa não funcionaria corretamente. 67 Usando protótipos você pode construir funções que retornam quaisquer tipos de variáveis. É bom ressaltar que funções podem também retornar ponteiros sem qualquer problema. Os protótipos não só ajudam o compilador. Eles ajudam a você também: usando protótipos, o compilador evita erros, não deixando que o programador use funções com os parâmetros errados e com o tipo de retorno errado, o que é uma grande ajuda! O Tipo void Agora vamos ver o único tipo da linguagem C que não detalhamos ainda: o void. Em inglês, void quer dizer vazio e é isto mesmo que o void é. Ele nos permite fazer funções que não retornam nada e funções que não têm parâmetros! Podemos agora escrever o protótipo de uma função que não retorna nada: void nome_da_função (declaração_de_parâmetros); Numa função, como a acima, não temos valor de retorno na declaração return. Aliás, neste caso, o comando return não é necessário na função. Podemos, também, fazer funções que não têm parâmetros: tipo_de_retorno nome_da_função (void); ou, ainda, que não tem parâmetros e não retornam nada: void nome_da_função (void); Um exemplo de funções que usam o tipo void: #include <stdio.h> void Mensagem (void); int main () { Mensagem(); printf ("\tDiga de novo:\n"); Mensagem(); return 0; } void Mensagem (void) { printf ("Ola! Eu estou vivo.\n"); } Se quisermos que a função retorne algo, devemos usar a declaração return. Se não quisermos, basta declarar a função como tendo tipo-de-retorno void. Devemos lembrar agora que a função main() é uma função e como tal devemos tratá-la. O compilador acha que a função main() deve retornar um inteiro. Isto pode ser interessante se quisermos que o sistema operacional receba um valor de retorno da função main(). Se assim o quisermos, devemos nos lembrar da seguinte convenção: se o programa retornar zero, significa que ele terminou normalmente, e, se o programa retornar um valor diferente de zero, significa que o programa teve um término anormal. Se não estivermos interessados neste tipo de coisa, basta declarar a função main como retornando void. 70 abrimos uma chave e termina quando fechamos a chave. Até agora só tínhamos visto variáveis locais para funções completas. Mas um comando for pode ter variáveis locais e que não serão conhecidas fora dali. A declaração de variáveis locais é a primeira coisa que devemos colocar num bloco. A característica que torna as variáveis locais tão importantes é justamente a de serem exclusivas do bloco. Podemos ter quantos blocos quisermos com uma variável local chamada x, por exemplo, e elas não apresentarão conflito entre elas. A palavra reservada do C auto serve para dizer que uma variável é local. Mas não precisaremos usá-la pois as variáveis declaradas dentro de um bloco já são consideradas locais. Abaixo vemos um exemplo de variáveis locais: func1 (...) { int abc,x; ... } func (...) { int abc; ... } void main () { int a,x,y; for (...) { float a,b,c; ... } ... } No programa acima temos três funções. As variáveis locais de cada uma delas não irão interferir com as variáveis locais de outras funções. Assim, a variável abc de func1() não tem nada a ver (e pode ser tratada independentemente) com a variável abc de func2(). A variável x de func1() é também completamente independente da variável x de main(). As variáveis a, b e c são locais ao bloco for. Isto quer dizer que só são conhecidas dentro deste bloco for e são desconhecidas no resto da função main(). Quando usarmos a variável a dentro do bloco for estaremos usando a variável a local ao for e não a variável a da função main(). - Parâmetros formais O segundo tipo de variável que veremos são os parâmetros formais. Estes são declarados como sendo as entradas de uma função. Não há motivo para se preocupar com o escopo deles. É fácil: o parâmetro formal é uma variável local da função. Você pode também alterar o valor de um parâmetro formal, pois esta alteração não terá efeito na variável que foi passada à função. Isto tem sentido, pois quando o C passa parâmetros para uma função, são passadas apenas cópias das variáveis. Isto é, os parâmetros formais existem independentemente das variáveis que foram passadas para a função. Eles tomam apenas uma cópia dos valores passados para a função. 71 - Variáveis globais Variáveis globais são declaradas, como já sabemos, fora de todas as funções do programa. Elas são conhecidas e podem ser alteradas por todas as funções do programa. Quando uma função tem uma variável local com o mesmo nome de uma variável global a função dará preferência à variável local. Vamos ver um exemplo: int z,k; func1 (...) { int x,y; ... } func2 (...) { int x,y,z; ... z=10; ... } main () { int count; ... } No exemplo acima as variáveis z e k são globais. Veja que func2() tem uma variável local chamada z. Quando temos então, em func2(), o comando z=10 quem recebe o valor de 10 é a variável local, não afetando o valor da variável global z. Evite ao máximo o uso de variáveis globais. Elas ocupam memória o tempo todo (as locais só ocupam memória enquanto estão sendo usadas) e tornam o programa mais difícil de ser entendido e menos geral. 72 AUTO AVALIAÇÃO Veja como você está. Estude o seguinte programa e aponte o valor de cada variável sempre que solicitado: #include <stdio.h> int num; int func(int a, int b) { a = (a+b)/2; /* Qual e o valor de a apos a atribuicao? */ num -= a; return a; } main() { int first = 0, sec = 50; num = 10; num += func(first, sec); /* Qual e o valor de num, first e sec */ /* antes e depois da atribuicao? */ printf("\n\nConfira! num = %d\tfirst = %d\tsec = %d",num, first, sec); } Passagem de parâmetros por valor e passagem por referência Já vimos que, na linguagem C, quando chamamos uma função os parâmetros formais da função copiam os valores dos parâmetros que são passados para a função. Isto quer dizer que não são alterados os valores que os parâmetros têm fora da função. Este tipo de chamada de função é denominado chamada por valor. Isto ocorre porque são passados para a função apenas os valores dos parâmetros e não os próprios parâmetros. Veja o exemplo abaixo: #include <stdio.h> float sqr (float num); void main () { float num,sq; printf ("Entre com um numero: "); scanf ("%f",&num); sq=sqr(num); printf ("\n\nO numero original e: %f\n",num); printf ("O seu quadrado vale: %f\n",sq); } float sqr (float num) { num=num*num; return num; } 75 O argc (argument count) é um inteiro e possui o número de argumentos com os quais a função main() foi chamada na linha de comando. Ele é, no mínimo 1, pois o nome do programa é contado como sendo o primeiro argumento. O argv (argument values) é um ponteiro para uma matriz de strings. Cada string desta matriz é um dos parâmetros da linha de comando. O argv[0] sempre aponta para o nome do programa (que, como já foi dito, é considerado o primeiro argumento). É para saber quantos elementos temos em argv que temos argc. Exemplo: Escreva um programa que faça uso dos parâamentros argv e argc. O programa deverá receber da linha de comando o dia, mês e ano correntes, e imprimir a data em formato apropriado. Veja o exemplo, supondo que o executável se chame data: data 19 04 99 O programa deverá imprimir: 19 de abril de 1999 #include <stdio.h> #include <stdlib.h> void main(int argc, char *argv[]) { int mes; char *nomemes [] = {"Janeiro", "Fevereiro", "Março", "Abril", "Maio", "Junho", "Julho", "Agosto", "Setembro", "Outubro", "Novembro", "Dezembro"}; if(argc == 4) /* Testa se o numero de parametros fornecidos esta' correto o primeiro parametro e' o nome do programa, o segundo o dia o terceiro o mes e o quarto os dois ultimos algarismos do ano */ { mes = atoi(argv[2]); /* argv contem strings. A string referente ao mes deve ser transformada em um numero inteiro. A funcao atoi esta sendo usada para isto: recebe a string e transforma no inteiro equivalente */ if (mes<1 || mes>12) /* Testa se o mes e' valido */ printf("Erro!\nUso: data dia mes ano, todos inteiros"); else printf("\n%s de %s de 19%s", argv[1], nomemes[mes-1], argv[3]); } else printf("Erro!\nUso: data dia mes ano, todos inteiros"); } Recursividade Na linguagem C, assim como em muitas outras linguagens de programação, uma função pode chamar a si própria. Uma função assim é chamada função recursiva. Todo cuidado é pouco ao se fazer funções recursivas. A primeira coisa a se providenciar é um critério de parada. Este vai determinar quando a função deverá parar de chamar a si mesma. Isto impede que a função se chame infinitas vezes. Uma função que calcule o fatorial de um número inteiro n é um bom exemplo de uma função recursiva: 76 #include <stdio.h> int fat(int n) { if (n) return n*fat(n-1); else return 1; } int main() { int n; printf("\n\nDigite um valor para n: "); scanf("%d", &n); printf("\nO fatorial de %d e' %d", n, fat(n)); return 0; } Note que, enquanto n não for igual a 0, a função fat chama a si mesma, cada vez com um valor menor. n=0 é critério de parada para esta função. Há certos algoritmos que são mais eficientes quando feitos de maneira recursiva, mas a recursividade é algo a ser evitado sempre que possível, pois, se usada incorretamente, tende a consumir muita memória e ser lenta. Lembre-se que memória é consumida cada vez que o computador faz uma chamada a uma função. Com funções recursivas a memória do computador pode se esgotar rapidamente. Outras Questões Uma função, como foi dito anteriormente, é um bloco de construção muito útil. No C as funções são flexíveis. A flexibilidade dá poder, mas exige cuidado. Funções devem ser implementadas, quando possível, da maneira mais geral possível. Isto as torna mais fáceis de serem reutilizadas e entendidas. Evite, sempre que possível, funções que usem variáveis globais. Se houver uma rotina que deve ser o mais veloz possível, seria bom implementá-la sem nenhuma (ou com o mínimo de) chamadas a funções, porque uma chamada a uma função consome tempo e memória. Um outro ponto importante é que, como já sabemos um bocado a respeito de funções, quando formos ensinar uma das funções das bibliotecas do C vamos mostrar, em primeiro lugar, o seu protótipo. Quem entendeu tudo que foi ensinado nesta parte sobre funções pode retirar inúmeras informações de um protótipo (tipo de retorno, nome da função, tipo dos argumentos, passagem por valor ou passagem por referência). Sugiro que neste ponto, o leitor leia um arquivo-cabeçalho como, por exemplo o stdio.h ou o string.h. É um bom treino. Estes arquivo podem ser encontrados no diretório apropriado do compilador que você estiver utilizando (geralmente o subdiretório include do diretório onde você instalou o compilador). 77 8 - DIRETIVAS DE COMPILAÇÃO As Diretivas de Compilação O pré-processador C é um programa que examina o programa fonte escrito em C e executa certas modificações nele, baseado nas Diretivas de Compilação. As diretivas de compilação são comandos que não são compilados, sendo dirigidos ao pré-processador, que é executado pelo compilador antes da execução do processo de compilação propriamente dito. Portanto, o pré-processador modifica o programa fonte, entregando para o compilador um programa modificado. Todas as diretivas de compilação são iniciadas pelo caracter #. As diretivas podem ser colocadas em qualquer parte do programa. Já vimos, e usamos muito, a diretiva #include. Sabemos que ela não gera código mas diz ao compilador que ele deve incluir um arquivo externo na hora da compilação. As diretivas do C são identificadas por começarem por #. As diretivas que estudaremos são definidas pelo padrão ANSI: #if #else #include #ifdef #elif #define #ifndef #endif #undef Procuraremos ser breves em suas descrições... A Diretiva include A diretiva #include já foi usada durante o nosso curso diversas vezes. Ela diz ao compilador para incluir, na hora da compilação, um arquivo especificado. Sua forma geral é: #include "nome_do_arquivo" ou #include <nome_do_arquivo> A diferença entre se usar " " e < > é somente a ordem de procura nos diretórios pelo arquivo especificado. Se você quiser informar o nome do arquivo com o caminho completo, ou se o arquivo estiver no diretório de trabalho, use " ". Se o arquivo estiver nos caminhos de procura pré-especificados do compilador, isto é, se ele for um arquivo do próprio sistema (como é o caso de arquivos como stdio.h, string.h, etc...) use < >. Observe que não há ponto e vírgula após a diretiva de compilação. Esta é uma característica importante de todas as diretivas de compilação e não somente da diretiva #include As Diretivas define e undef A diretiva #define tem a seguinte forma geral: #define nome_da_macro sequência_de_caracteres 80 AUTO AVALIAÇÃO Veja como você está: Escreva uma macro que retorne 1 se o seu argumento for um número ímpar e 0 se for um número par. As Diretivas ifdef e endif Nesta seção, e até mais a frente, veremos as diretivas de compilação condicional. Elas são muito parecidas com os comandos de execução condicional do C. As duas primeiras diretivas que veremos são as #ifdef e #endif. Suas formas gerais são: #ifdef nome_da_macro sequência_de_declarações #endif A sequência de declarações será compilada apenas se o nome da macro estiver definido. A diretiva de compilação #endif é util para definir o fim de uma sequência de declarações para todas as diretivas de compilação condicional. As linhas #define PORT_0 0x378 ... /* Linhas de codigo qualquer... */ ... #ifdef PORT_0 #define PORTA PORT_0 #include "../sys/port.h" #endif demonstram como estas diretivas podem ser utilizadas. Caso PORT_0 tenha sido previamente definido, a macro PORTA é definida e o header file port.h é incluído. A Diretiva ifndef A diretiva #ifndef funciona ao contrário da diretiva #ifdef. Sua forma geral é: #ifndef nome_da_macro sequência_de_declarações #endif A sequência de declarações será compilada se o nome da macro não tiver sido definido. A Diretiva if A diretiva #if tem a seguinte forma geral: #if expressão_constante sequência_de_declarações #endif A sequência de declarações será compilada se a expressão-constante for verdadeira. É muito importande ressaltar que a expressão fornecida deve ser constante, ou seja, não deve ter nenhuma variável. 81 A Diretiva else A diretiva #else tem a seguinte forma geral: #if expressão_constante sequência_de_declarações #else sequência_de_declarações #endif Ela funciona como seu correspondente, o comando else. Imagine que você esteja trabalhando em um sistema, e deseje que todo o código possa ser compilado em duas diferentes plataformas (i.e. Unix e Dos). Para obter isto, você "encapsula" toda a parte de entrada e saída em arquivos separados, que serão carregados de acordo com o header file carregado. Isto pode ser facilmente implementado da seguinte forma: #define SISTEMA DOS ... /*linhas de codigo..*/ ... #if SISTEMA == DOS #define CABECALHO "dos_io.h" #else #define CABECALHO "unix_io.h" #endif #include CABECALHO A Diretiva elif A diretiva #elif serve para implementar a estrutura if-else-if. Sua forma geral é: #if expressão_constante_1 sequência_de_declarações_1 #elif expressão_constante_2 sequência_de_declarações_2 #elif expressão_constante_3 sequência_de_declarações_3 . . . #elif expressão_constante_n sequência_de_declarações_n #endif O funcionamento desta estrutura é idêntico ao funcionamento apresentado anteriormente. 82 9 - Entradas e Saídas Padronizadas Introdução O sistema de entrada e saída da linguagem C está estruturado na forma de uma biblioteca de funções . Já vimos algumas destas funções, e agora elas serão reestudadas. Novas funções também serão apresentadas. Não é objetivo deste curso explicar, em detalhes, todas as possíveis funções da biblioteca de entrada e saída do C. A sintaxe completa destas funções pode ser encontrada no manual do seu compilador. Alguns sistemas trazem um descrição das funções na ajuda do compilador, que pode ser acessada "on line". Isto pode ser feito, por exemplo, no Rhide. Um ponto importante é que agora, quando apresentarmos uma função, vamos, em primeiro lugar, apresentar o seu protótipo. Você já deve ser capaz de interpretar as informações que um protótipo nos passa. Se não, deve voltar a estudar a aula sobre funções. Outro aspecto importante, quando se discute a entrada e saída na linguagem C é o conceito de fluxo. Seja qual for o dispositivo de entrada e saída (discos, terminais, teclados, acionadores de fitas) que se estiver trabalhando, o C vai enxergá-lo como um fluxo, que nada mais é que um dispositivo lógico de entrada ou saída. Todos os fluxos são similares em seu funcionamento e independentes do dispositivo ao qual estão associados. Assim, as mesmas funções que descrevem o acesso aos discos podem ser utilizadas para se acessar um terminal de vídeo. Todas as operações de entrada e saída são realizadas por meio de fluxos. Na linguagem C, um arquivo é entendido como um conceito que pode ser aplicado a arquivos em disco, terminais, modens, etc ... Um fluxo é associado a um arquivo através da realização de uma operação de abertura. Uma vez aberto, informações podem ser trocadas entre o arquivo e o programa. Um arquivo é dissociado de um fluxo através de uma operação de fechamento de arquivo. Lendo e Escrevendo Caracteres Uma das funções mais básicas de um sistema é a entrada e saída de informações em dispositivos. Estes podem ser um monitor, uma impressora ou um arquivo em disco. Vamos ver os principais comandos que o C nos fornece para isto. - getche e getch As funções getch() e getche() não são definidas pelo padrão ANSI. Porém, elas geralmente são incluídas em compiladores baseados no DOS, e se encontram no header file conio.h. Vale a pena repetir: são funções comuns apenas para compiladores baseados em DOS e, se você estiver no UNIX normalmente não terá estas funções disponíveis. 85 Código Formato %c Um caracter (char) %d Um número inteiro decimal (int) %i O mesmo que %d %e Número em notação científica com o "e"minúsculo %E Número em notação científica com o "e"maiúsculo %f Ponto flutuante decimal %g Escolhe automaticamente o melhor entre %f e %e %G Escolhe automaticamente o melhor entre %f e %E %o Número octal %s String %u Decimal "unsigned" (sem sinal) %x Hexadecimal com letras minúsculas %X Hexadecimal com letras maiúsculas %% Imprime um % %p Ponteiro Vamos ver alguns exemplos: Código Imprime printf ("Um %%%c %s",'c',"char"); Um %c char printf ("%X %f %e",107,49.67,49.67); 6B 49.67 4.967e1 printf ("%d %o",10,10); 10 12 É possível também indicar o tamanho do campo, justificação e o número de casas decimais. Para isto usa-se códigos colocados entre o % e a letra que indica o tipo de formato. Um inteiro indica o tamanho mínimo, em caracteres, que deve ser reservado para a saída. Se colocarmos então %5d estamos indicando que o campo terá cinco caracteres de comprimento no mínimo. Se o inteiro precisar de mais de cinco caracteres para ser exibido então o campo terá o comprimento necessário para exibi-lo. Se o comprimento do inteiro for menor que cinco então o campo terá cinco de comprimento e será preenchido com espaços em branco. Se se quiser um preenchimento com zeros pode-se colocar um zero antes do número. Temos então que %05d reservará cinco casas para o número e se este for menor então se fará o preenchimento com zeros. O alinhamento padrão é à direita. Para se alinhar um número à esquerda usa-se um sinal - antes do número de casas. Então %-5d será o nosso inteiro com o número mínimo de cinco casas, só que justificado a esquerda. Pode-se indicar o número de casas decimais de um número de ponto flutuante. Por exemplo, a notação %10.4f indica um ponto flutuante de comprimento total dez e com 4 casas decimais. Entretanto, esta mesma notação, quando aplicada a tipos como 86 inteiros e strings indica o número mínimo e máximo de casas. Então %5.8d é um inteiro com comprimento mínimo de cinco e máximo de oito. Vamos ver alguns exemplos: Código Imprime printf ("%-5.2f",456.671); | 456.67| printf ("%5.2f",2.671); | 2.67| printf ("%-10s","Ola"); |Ola | Nos exemplos o "pipe" ( | ) indica o início e o fim do campo mas não são escritos na tela. - scanf Protótipo: int scanf (char *str,...); A string de controle str determina, assim como com a função printf(), quantos parâmetros a função vai necessitar. Devemos sempre nos lembrar que a função scanf() deve receber ponteiros como parâmetros. Isto significa que as variáveis que não sejam por natureza ponteiros devem ser passadas precedidas do operador &. Os especificadores de formato de entrada são muito parecidos com os de printf(). Os caracteres de conversão d, i, u e x podem ser precedidos por h para indicarem que um apontador para short ao invés de int aparece na lista de argumento, ou pela letra l (letra ele) para indicar que que um apontador para long aparece na lista de argumento. Semelhantemente, os caracteres de conversão e, f e g podem ser precedidos por l para indicarem que um apontador para double ao invés de float está na lista de argumento. Exemplos: Código Formato %c Um único caracter (char) %d Um número decimal (int) %i Um número inteiro %hi Um short int %li Um long int %e Um ponto flutuante %f Um ponto flutuante %lf Um double %h Inteiro curto %o Número octal %s String %x Número hexadecimal %p Ponteiro 87 - sprintf e sscanf sprintf e sscanf são semelhantes a printf e scanf. Porém, ao invés de escreverem na saída padrão ou lerem da entrada padrão, escrevem ou leem em uma string. Os protótipos são: int sprintf (char *destino, char *controle, ...); int sscanf (char *destino, char *controle, ...); Estas funções são muito utilizadas para fazer a conversão entre dados na forma numérica e sua representação na forma de strings. No programa abaixo, por exemplo, a variável i é "impressa" em string1. Além da representação de i como uma string, string1 também conterá "Valor de i=" . #include <stdio.h> int main() { int i; char string1[20]; printf( " Entre um valor inteiro: "); scanf("%d", &i); sprintf(string1,"Valor de i = %d", i); puts(string1); return 0; } Já no programa abaixo, foi utilizada a função sscanf para converter a informação armazenada em string1 em seu valor numérico: #include <stdio.h> int main() { int i, j, k; char string1[]= "10 20 30"; sscanf(string1, "%d %d %d", &i, &j, &k); printf("Valores lidos: %d, %d, %d", i, j, k); return 0; } AUTO AVALIAÇÃO Veja como você está. Escreva um programa que leia (via teclado) e apresente uma matriz 3X3 na tela. Utilize os novos códigos de formato aprendidos para que a matriz se apresente corretamente identada. Altere os tipos de dados da matriz (int, float, double) e verifique a formatação correta para a identação. Verifique também a leitura e impressão de números hexadecimais. 90 - fclose Quando acabamos de usar um arquivo que abrimos, devemos fechá-lo. Para tanto usa-se a função fclose(): int fclose (FILE *fp); O ponteiro fp passado à função fclose() determina o arquivo a ser fechado. A função retorna zero no caso de sucesso. Fechar um arquivo faz com que qualquer caracter que tenha permanecido no "buffer" associado ao fluxo de saída seja gravado. Mas, o que é este "buffer"? Quando você envia caracteres para serem gravados em um arquivo, estes caracteres são armazenados temporariamente em uma área de memória (o "buffer") em vez de serem escritos em disco imediatamente. Quando o "buffer" estiver cheio, seu conteúdo é escrito no disco de uma vez. A razão para se fazer isto tem a ver com a eficiência nas leituras e gravações de arquivos. Se, para cada caracter que fossemos gravar, tivéssemos que posicionar a cabeça de gravação em um ponto específico do disco, apenas para gravar aquele caracter, as gravações seriam muito lentas. Assim estas gravações só serão efetuadas quando houver um volume razoável de informações a serem gravadas ou quando o arquivo for fechado. A função exit() fecha todos os arquivos que um programa tiver aberto. Lendo e Escrevendo Caracteres em Arquivos - putc A função putc é a primeira função de escrita de arquivo que veremos. Seu protótipo é: int putc (int ch,FILE *fp); Escreve um caractere no arquivo. O programa a seguir lê uma string do teclado e escreve-a, caractere por caractere em um arquivo em disco (o arquivo arquivo.txt, que será aberto no diretório corrente). #include <stdio.h> #include <stdlib.h> int main() { FILE *fp; char string[100]; int i; fp = fopen("arquivo.txt","w"); /* Arquivo ASCII, para escrita */ if(!fp) { printf( "Erro na abertura do arquivo"); exit(0); } printf("Entre com a string a ser gravada no arquivo:"); gets(string); for(i=0; string[i]; i++) putc(string[i], fp); /* Grava a string, caractere a caractere */ fclose(fp); return 0; } 91 Depois de executar este programa, verifique o conteúdo do arquivo arquivo.txt (você pode usar qualquer editor de textos). Você verá que a string que você digitou está armazenada nele. - getc Retorna um caractere lido do arquivo. Protótipo: int getc (FILE *fp); - feof EOF ("End of file") indica o fim de um arquivo. Às vezes, é necessário verificar se um arquivo chegou ao fim. Para isto podemos usar a função feof(). Ela retorna não- zero se o arquivo chegou ao EOF, caso contrário retorna zero. Seu protótipo é: int feof (FILE *fp); Outra forma de se verificar se o final do arquivo foi atingido é comparar o caractere lido por getc com EOF. O programa a seguir abre um arquivo já existente e o lê, caracter por caracter, até que o final do arquivo seja atingido. Os caracteres lidos são apresentados na tela: #include <stdio.h> #include <stdlib.h> int main() { FILE *fp; char c; fp = fopen("arquivo.txt","r"); /* Arquivo ASCII, para leitura */ if(!fp) { printf( "Erro na abertura do arquivo"); exit(0); } while((c = getc(fp) ) != EOF) /* Enquanto não chegar ao final do arquivo */ printf("%c", c); /* imprime o caracter lido */ fclose(fp); return 0; } A seguir é apresentado um programa onde várias operações com arquivos são realizadas, usando as funções vistas nesta página. Primeiro o arquivo é aberto para a escrita, e imprime-se algo nele. Em seguida, o arquivo é fechado e novamente aberto para a leitura. Verifique o exemplo. 92 #include <stdio.h> #include <stdlib.h> #include <string.h> void main() { FILE *p; char c, str[30], frase[80] = "Este e um arquivo chamado: "; int i; /* Le um nome para o arquivo a ser aberto: */ printf("\n\n Entre com um nome para o arquivo:\n"); gets(str); if (!(p = fopen(str,"w"))) /* Caso ocorra algum erro na abertura do arquivo..*/ { /* o programa aborta automaticamente */ printf("Erro! Impossivel abrir o arquivo!\n"); exit(1); } /* Se nao houve erro, imprime no arquivo e o fecha ...*/ strcat(frase, str); for (i=0; frase[i]; i++) putc(frase[i],p); fclose(p); /* Abre novamente para leitura */ p = fopen(str,"r"); c = getc(p); /* Le o primeiro caracter */ while (!feof(p)) /* Enquanto não se chegar no final do arquivo */ { printf("%c",c); /* Imprime o caracter na tela */ c = getc(p); /* Le um novo caracter no arquivo */ } fclose(p); /* Fecha o arquivo */ } AUTO-AVALIAÇÃO Veja como você está: escreva um programa que abra um arquivo texto e conte o número de caracteres presentes nele. Imprima o número de caracteres na tela. Outros Comandos de Acesso a Arquivos - Arquivos pré-definidos Quando se começa a execução de um programa, o sistema automaticamente abre alguns arquivos pré-definidos: 95 O buffer é a região de memória na qual serão armazenados os dados lidos. O número de bytes é o tamanho da unidade a ser lida. count indica quantas unidades devem ser lidas. Isto significa que o número total de bytes lidos é: numero_de_bytes*count A função retorna o número de unidades efetivamente lidas. Este número pode ser menor que count quando o fim do arquivo for encontrado ou ocorrer algum erro. Quando o arquivo for aberto para dados binários, fread pode ler qualquer tipo de dados. - fwrite A função fwrite() funciona como a sua companheira fread(), porém escrevendo no arquivo. Seu protótipo é: unsigned fwrite(void *buffer,int numero_de_bytes,int count,FILE *fp); A função retorna o número de itens escritos. Este valor será igual a count a menos que ocorra algum erro. O exemplo abaixo ilustra o uso de fwrite e fread para gravar e posteriormente ler uma variável float em um arquivo binário. #include <stdio.h> #include <stdlib.h> int main() { FILE *pf; float pi = 3.1415; float pilido; if((pf = fopen("arquivo.bin", "wb")) == NULL) /* Abre arquivo binário para escrita */ { printf("Erro na abertura do arquivo"); exit(1); } if(fwrite(&pi, sizeof(float), 1,pf) != 1) /* Escreve a variável pi */ printf("Erro na escrita do arquivo"); fclose(pf); /* Fecha o arquivo */ if((pf = fopen("arquivo.bin", "rb")) == NULL) /* Abre o arquivo novamente para leitura */ { printf("Erro na abertura do arquivo"); exit(1); } if(fread(&pilido, sizeof(float), 1,pf) != 1) /* Le em pilido o valor da variável armazenada anteriormente */ printf("Erro na leitura do arquivo"); printf("\nO valor de PI, lido do arquivo e': %f", pilido); fclose(pf); return(0); } 96 Note-se o uso do operador sizeof, que retorna o tamanho em bytes da variável ou do tipo de dados. - fseek Para se fazer procuras e acessos randômicos em arquivos usa-se a função fseek(). Esta move a posição corrente de leitura ou escrita no arquivo de um valor especificado, a partir de um ponto especificado. Seu protótipo é: int fseek (FILE *fp,long numbytes,int origem); O parâmetro origem determina a partir de onde os numbytes de movimentação serão contados. Os valores possíveis são definidos por macros em stdio.h e são: Nome Valor Significado SEEK_SET 0 Início do arquivo SEEK_CUR 1 Ponto corrente no arquivo SEEK_END 2 Fim do arquivo Tendo-se definido a partir de onde irá se contar, numbytes determina quantos bytes de deslocamento serão dados na posição atual. - rewind A função rewind() de protótipo void rewind (FILE *fp); retorna a posição corrente do arquivo para o início. - remove Protótipo: int remove (char *nome_do_arquivo); Apaga um arquivo especificado. O exercício da página anterior poderia ser reescrito usando-se, por exemplo, fgets() e fputs(), ou fwrite() e fread(). A seguir apresentamos uma segunda versão que se usa das funções fgets() e fputs(), e que acrescenta algumas inovações. 97 #include <stdio.h> #include <string.h> #include <stdlib.h> int main() { FILE *p; char str[30], frase[] = "Este e um arquivo chamado: ", resposta[80]; int i; /* Le um nome para o arquivo a ser aberto: */ printf("\n\n Entre com um nome para o arquivo:\n"); fgets(str,29,stdin); /* Usa fgets como se fosse gets */ for(i=0; str[i]; i++) if(str[i]=='\n') str[i]=0; /* Elimina o \n da string lida */ if (!(p = fopen(str,"w"))) /* Caso ocorra algum erro na abertura do arquivo..*/ { /* o programa aborta automaticamente */ printf("Erro! Impossivel abrir o arquivo!\n"); exit(1); } /* Se nao houve erro, imprime no arquivo, e o fecha ...*/ fputs(frase, p); fputs(str,p); fclose(p); /* abre novamente e le */ p = fopen(str,"r"); fgets(resposta, 79, p); printf("\n\n%s\n", resposta); fclose(p); /* Fecha o arquivo */ remove(str); /* Apaga o arquivo */ return(0); } Fluxos Padrão Os fluxos padrão em arquivos permitem ao programador ler e escrever em arquivos da maneira padrão com a qual o já líamos e escrevíamos na tela. - fprintf A função fprintf() funciona como a função printf(). A diferença é que a saída de fprintf() é um arquivo e não a tela do computador. Protótipo: int fprintf (FILE *fp,char *str,...);
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved